Suppr超能文献

多视角预测肽-GPCR 复合物的方法:以 N/OFQ-NOP 系统作为 AlphaFold 应用案例研究。

A Multi-Angle Approach to Predict Peptide-GPCR Complexes: The N/OFQ-NOP System as a Successful AlphaFold Application Case Study.

机构信息

Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy.

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy.

出版信息

J Chem Inf Model. 2024 Oct 28;64(20):8034-8051. doi: 10.1021/acs.jcim.4c00499. Epub 2024 Aug 13.

Abstract

With nearly 700 structures solved and a growing number of customized structure prediction algorithms being developed at a fast pace, G protein-coupled receptors (GPCRs) are an optimal test case for validating new approaches for the prediction of receptor active state and ligand bioactive conformation complexes. In this study, we leveraged the availability of hundreds of peptide GPCRs in the active state and both classical homology and artificial intelligence (AI) based protein modeling combined with docking and AI-based peptide structure prediction approaches to predict the nociceptin/orphanin FQ-NOP receptor active state complex (N/OFQ-NOPa). The generated hypotheses were validated via the design, synthesis, and pharmacological characterization of novel linear N/OFQ(1-13)-NH analogues, leading to the discovery of a novel antagonist (; p = 6.63) bearing a single ring-constrained residue in place of the Gly-Gly motif of the N/OFQ message sequence (FGGF). While the experimental validation was ongoing, the availability of the Cryo-EM structure of the predicted complex enabled us to unambiguously validate the generated hypotheses. To the best of our knowledge, this is the first example of a peptide-GPCR complex predicted with atomistic accuracy (full complex Cα RMSD < 1.0 Å) and of the N/OFQ message moiety being successfully modified with a rigid scaffold.

摘要

利用数百个处于活性状态的肽 G 蛋白偶联受体 (GPCR),以及经典同源建模和基于人工智能 (AI) 的蛋白质建模,结合对接和基于 AI 的肽结构预测方法,我们预测了孤啡肽/孤啡肽 FQ-NOP 受体活性状态复合物 (N/OFQ-NOPa)。通过设计、合成和药理学表征新型线性 N/OFQ(1-13)-NH 类似物,对生成的假说进行验证,从而发现了一种新型拮抗剂 (; p = 6.63),其中一个单环约束残基取代了 N/OFQ 信息序列中的甘氨酰-甘氨酰基序 (FGGF)。在实验验证的同时,预测复合物的 Cryo-EM 结构的可用性使我们能够明确验证生成的假说。据我们所知,这是第一个以原子精度预测的肽-GPCR 复合物的示例(完整复合物 Cα RMSD<1.0 Å),并且 N/OFQ 信息部分成功地用刚性支架进行了修饰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验