Lu Wei, Wang Jinkai, Li Shiquan, Zhu Jianhua, Chao Yunfeng, Wang Zhuosen, Tian Yapeng, Cui Xinwei
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, China.
School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):101-110. doi: 10.1016/j.jcis.2024.08.059. Epub 2024 Aug 12.
Sodium-selenium (Na-Se) batteries are promising energy storage systems with high energy density, high safety, and low cost. However, the huge volume change of selenium, the dissolution shuttle of polyselenides, and low selenium loading need to be solved. Herein, Cu nanoparticles decorated MXene nanosheets composite (MXene/Cu) are synthesized by etching TiAlC using a molten salt etching strategy. The Se-loaded MXene/Cu (Se@MXene/Cu) electrode delivers superior electrochemical performance even with a high Se loading of ∼74.3 wt%, owing to the synergistic effect of the two-dimensional (2D) confined structure and catalytic role of the unique MXene/Cu host. Specifically, the obtained electrode provides a reversible capacity of 587.3 mAh/g at 0.2 A/g, a discharge capacity as high as 511.3 mAh/g at a high rate of 50 A/g, and still maintains a capacity of 471.9 mAh/g even after 5000 cycles based on the mass of Se@MXene/Cu. With such excellent electrochemical kinetic properties, this study highlights the importance of designing various MXene-based composites with synergistic effects of 2D confined structure and Cu catalytic center for the development of high-performance alkali metal-chalcogen battery systems.
钠硒(Na-Se)电池是具有高能量密度、高安全性和低成本的很有前景的储能系统。然而,硒的巨大体积变化、多硒化物的溶解穿梭以及低硒负载量等问题仍有待解决。在此,采用熔盐蚀刻策略蚀刻TiAlC合成了铜纳米颗粒修饰的MXene纳米片复合材料(MXene/Cu)。负载硒的MXene/Cu(Se@MXene/Cu)电极即使在硒负载量高达约74.3 wt%的情况下仍具有优异的电化学性能,这归因于二维(2D)受限结构的协同效应以及独特的MXene/Cu主体的催化作用。具体而言,所制备的电极在0.2 A/g电流密度下提供587.3 mAh/g的可逆容量,在50 A/g的高电流密度下放电容量高达511.3 mAh/g,并且基于Se@MXene/Cu的质量,即使在5000次循环后仍保持471.9 mAh/g的容量。凭借如此优异的电化学动力学性能,本研究突出了设计具有二维受限结构和铜催化中心协同效应的各种基于MXene的复合材料对于开发高性能碱金属硫族化物电池系统的重要性。