Vallem Sowjanya, Song Seunghyun, Oh Yoonju, Kim Jihyun, Li Man, Li Yang, Cheng Xiong, Bae Joonho
Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea.
Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea.
J Colloid Interface Sci. 2024 Jul;665:1017-1028. doi: 10.1016/j.jcis.2024.03.159. Epub 2024 Mar 25.
Lithium-selenium batteries have emerged as a promising alternative to lithium-sulfur batteries due to their high electrical conductivity and comparable volume capacity. However, challenges such as the shuttle effect of polyselenides and high-volume fluctuations hinder their practical implementation. To address these issues, we propose synthesizing Fe-CNT/TiO catalyst through high-temperature sintering of an amalgamated nanoarchitecture of carbon nanotubes decorated metal-organic framework (MOF) and MXene, optimized for efficient selenium hosting, leveraging the distinctive physicochemical properties. The catalytic features inherent in the porous Se@Fe-CNT/TiO nanoarchitecture were instrumental in promoting efficient ion and electron transport, and lithium-polyselenide kinetics, while its inherent porosity could play a crucial role in inhibiting electrode stress during cycling. This nanoarchitecture exhibits remarkable battery performance, retaining 99.7% of theoretical capacity after 425 cycles at 0.5 C rate and demonstrating 95.8% capacity retention after 2000 cycles at 1 C rate, with ∼100% Coulombic efficiency. Additionally, the Se@Fe-CNT/TiO electrode exhibited an impressive recovery of 297.5 mAh/g (97.9%) capacity after undergoing 450 cycles at a charging rate of 10 C and a discharging rate of 1 C. This synergistic integration of MOF- and MXene-derived materials unveils new possibilities for high-performance and durable LSeBs, thus advancing electrochemical energy storage systems.
锂硒电池因其高电导率和可比的体积容量,已成为锂硫电池的一种有前景的替代方案。然而,多硒化物的穿梭效应和高体积波动等挑战阻碍了它们的实际应用。为了解决这些问题,我们提出通过对装饰有金属有机框架(MOF)和MXene的碳纳米管的混合纳米结构进行高温烧结来合成Fe-CNT/TiO催化剂,该结构针对高效容纳硒进行了优化,利用了其独特的物理化学性质。多孔的Se@Fe-CNT/TiO纳米结构所固有的催化特性有助于促进高效的离子和电子传输以及锂多硒化物动力学,而其固有的孔隙率在抑制循环过程中的电极应力方面可能发挥关键作用。这种纳米结构表现出卓越的电池性能,在0.5 C倍率下经过425次循环后保留了99.7%的理论容量,在1 C倍率下经过2000次循环后容量保持率为95.8%,库仑效率约为100%。此外,Se@Fe-CNT/TiO电极在以10 C充电率和1 C放电率进行450次循环后,表现出令人印象深刻的297.5 mAh/g(97.9%)容量恢复。MOF和MXene衍生材料的这种协同整合为高性能和耐用的锂硒电池揭示了新的可能性,从而推动了电化学储能系统的发展。