Xing Guanru, Liu Shize, Sun Guang-Yan, Liu Jing-Yao
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):111-119. doi: 10.1016/j.jcis.2024.08.069. Epub 2024 Aug 11.
Electrochemical carbon dioxide reduction reaction (CORR) is a promising technology to establish an artificial carbon cycle. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with high electrical conductivity have great potential as catalysts. Herein, we designed a range of 2D c-MOFs with different transition metal atoms and organic ligands, TMNO-HDQ (TM = Cr∼Cu, Mo, Ru∼Ag, W∼Au; x = 0, 2, 4; HDQ = hexadipyrazinoquinoxaline), and systematically studied their catalytic performance using density functional theory (DFT). Calculation results indicated that all of TMNO-HDQ structures possess good thermodynamic and electrochemical stability. Notably, among the examined 37 MOFs, 6 catalysts outperformed the Cu(211) surface in terms of catalytic activity and product selectivity. Specifically, NiN-HDQ emerged as an exceptional electrocatalyst for CO production in CORR, yielding a remarkable low limiting potential (U) of -0.04 V. CuN-HDQ, NiNO-HDQ, and PtNO-HDQ also exhibited high activity for HCOOH production, with U values of -0.27, -0.29, and -0.27 V, respectively, while MnN-HDQ, and NiO-HDQ mainly produced CH with U values of -0.58 and -0.24 V, respectively. Furthermore, these 6 catalysts efficiently suppressed the competitive hydrogen evolution reaction. Machine learning (ML) analysis revealed that the key intrinsic factors influencing CORR performance of these 2D c-MOFs include electron affinity (E), electronegativity (χ), the first ionization energy (I), p-band center of the coordinated N/O atom (ε), the radius of metal atom (r), and d-band center (ε). Our findings may provide valuable insights for the exploration of highly active and selective CORR electrocatalysts.
电化学二氧化碳还原反应(CORR)是建立人工碳循环的一项很有前景的技术。具有高电导率的二维共轭金属有机框架(2D c-MOFs)作为催化剂具有巨大潜力。在此,我们设计了一系列含有不同过渡金属原子和有机配体的2D c-MOFs,即TMNO-HDQ(TM = Cr∼Cu、Mo、Ru∼Ag、W∼Au;x = 0、2、4;HDQ = 六联二吡嗪并喹喔啉),并使用密度泛函理论(DFT)系统地研究了它们的催化性能。计算结果表明,所有TMNO-HDQ结构都具有良好的热力学和电化学稳定性。值得注意的是,在所研究的37种MOF中,有6种催化剂在催化活性和产物选择性方面优于Cu(211)表面。具体而言,NiN-HDQ在CORR中成为一种用于CO生成的优异电催化剂,产生了显著低的极限电位(U),为 -0.04 V。CuN-HDQ、NiNO-HDQ和PtNO-HDQ对HCOOH生成也表现出高活性,U值分别为 -0.27、-0.29和 -0.27 V,而MnN-HDQ和NiO-HDQ主要生成CH,U值分别为 -0.58和 -0.24 V。此外,这6种催化剂有效地抑制了竞争性析氢反应。机器学习(ML)分析表明,影响这些2D c-MOFs的CORR性能的关键内在因素包括电子亲和能(E)、电负性(χ)、第一电离能(I)、配位N/O原子的p带中心(ε)、金属原子半径(r)和d带中心(ε)。我们的研究结果可能为探索高活性和选择性的CORR电催化剂提供有价值的见解。