Suppr超能文献

用于高能锂离子电池的层状富镍LiNiCoMnO正极材料的原位钛掺杂改性

In-situ Ti-doped modification of layer-structured Ni-rich LiNiCoMnO cathode materials for high-energy lithium-ion batteries.

作者信息

Yi Zhicheng, Liu Chengjin, Miao Chang, Wang Zhiyan, Wang Jiale, Xin Yu, Xiao Wei

机构信息

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt B):91-100. doi: 10.1016/j.jcis.2024.08.064. Epub 2024 Aug 12.

Abstract

The further commercialization of layer-structured Ni-rich LiNiCoMnO (NCM83) cathode for high-energy lithium-ion batteries (LIBs) has been challenged by severe capacity decay and thermal instability owing to the microcracks and harmful phase transitions. Herein, Ti-doped NCM83 cathode materials are rationally designed via a simple and low-cost in-situ modification method to improve the crystal structure and electrode-electrolyte interface stability by inhibiting irreversible polarizations and harmful phase transitions of the NCM83 cathode materials due to Ti-doped forms stronger metal-O bonds and a stable bulk structural. In addition, the optimal doping amount of the composite cathode material is also determined through the results of physical characterization and electrochemical performance testing. The optimized Ti-doped NCM83 cathode material presents wider Li ions diffusion channels (c = 14.1687 Å), lower Li/Ni mixing degree (2.68 %), and compact bulk structure. The cell assembled with the optimized Ti-doped NCM83 cathode material exhibits remarkable capacity retention ratio of 95.4 % after 100cycles at 2.0C and room temperature, and outstanding reversible discharge specific capacity of 148.2 mAh g at 5.0C. Even under elevated temperature of 60 °C, it delivers excellent capacity retention ratio of 92.2 % after 100cycles at 2.0C, which is significantly superior to the 47.9 % of the unmodified cathode material. Thus, the in-situ Ti-doped strategy presents superior advantages in enhancing the structural stability of Ni-rich cathode materials for LIBs.

摘要

层状富镍LiNiCoMnO(NCM83)正极材料用于高能锂离子电池(LIBs)的进一步商业化受到了挑战,因为微裂纹和有害的相变导致严重的容量衰减和热不稳定性。在此,通过一种简单且低成本的原位改性方法合理设计了Ti掺杂的NCM83正极材料,通过抑制NCM83正极材料的不可逆极化和有害相变来改善晶体结构和电极-电解质界面稳定性,这是由于Ti掺杂形成了更强的金属-氧键和稳定的体相结构。此外,还通过物理表征和电化学性能测试结果确定了复合正极材料的最佳掺杂量。优化后的Ti掺杂NCM83正极材料具有更宽的锂离子扩散通道(c = 14.1687 Å)、更低的Li/Ni混合度(2.68%)和致密的体相结构。采用优化后的Ti掺杂NCM83正极材料组装的电池在2.0C和室温下100次循环后显示出95.4%的显著容量保持率,在5.0C时具有148.2 mAh g的出色可逆放电比容量。即使在60°C的高温下,在2.0C下100次循环后它仍具有92.2%的优异容量保持率,这明显优于未改性正极材料的47.9%。因此,原位Ti掺杂策略在提高LIBs富镍正极材料的结构稳定性方面具有显著优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验