Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Talanta. 2024 Dec 1;280:126696. doi: 10.1016/j.talanta.2024.126696. Epub 2024 Aug 10.
Circulating tumor cells (CTC) are considered metastatic precursors that are shed from the primary or metastatic deposits and navigate the bloodstream before undergoing extravasation to establish distant metastases. Metabolic reprogramming appears to be a hallmark of metastatic progression, yet current methods for evaluating metabolic heterogeneity within organ-specific metastases in vivo are limited. To overcome this challenge, we present Biofluorescence Imaging-Guided Spatial Metabolic Tracing (BIGSMT), a novel approach integrating in vivo biofluorescence imaging, stable isotope tracing, stain-free laser capture microdissection, and liquid chromatography-mass spectrometry. This innovative technology obviates the need for staining or intricate sample preparation, mitigating metabolite loss, and substantially enhances detection sensitivity and accuracy through chemical derivatization of polar metabolites in central carbon pathways. Application of BIGSMT to a preclinical CTC-mediated metastasis mouse model revealed significant heterogeneity in the in vivo carbon flux from glucose into glycolysis and the tricarboxylic acid (TCA) cycle across distinct metastatic sites. Our analysis indicates that carbon predominantly enters the TCA cycle through the enzymatic reaction catalyzed by pyruvate dehydrogenase. Thus, our spatially resolved BIGSMT technology provides fresh insights into the metabolic heterogeneity and evolution during melanoma CTC-mediated metastatic progression and points to novel therapeutic opportunities.
循环肿瘤细胞(CTC)被认为是从原发性或转移性沉积物中脱落并在发生血外渗以建立远处转移之前在血液中导航的转移性前体。代谢重编程似乎是转移进展的一个标志,但目前评估体内特定器官转移中代谢异质性的方法有限。为了克服这一挑战,我们提出了生物荧光成像引导空间代谢追踪(BIGSMT),这是一种将体内生物荧光成像、稳定同位素示踪、无染色激光捕获显微切割和液相色谱-质谱相结合的新方法。这项创新技术避免了染色或复杂的样品制备的需要,通过对中央碳途径中的极性代谢物进行化学衍生化,减轻了代谢物的损失,并大大提高了检测的灵敏度和准确性。BIGSMT 在临床前 CTC 介导的转移小鼠模型中的应用表明,不同转移部位的葡萄糖进入糖酵解和三羧酸(TCA)循环的体内碳通量存在显著异质性。我们的分析表明,碳主要通过丙酮酸脱氢酶催化的酶反应进入 TCA 循环。因此,我们的空间分辨 BIGSMT 技术为黑色素瘤 CTC 介导的转移进展过程中的代谢异质性和演变提供了新的见解,并为新的治疗机会指明了方向。