Suppr超能文献

深度学习在外照射放疗中的剂量预测应用:叙事性综述。

Deep learning applied to dose prediction in external radiation therapy: A narrative review.

机构信息

Laboratoire chronoenvironnement, UMR 6249, université de Franche-Comté, CNRS, 4, place Tharradin, 25200 Montbéliard, France.

Laboratoire chronoenvironnement, UMR 6249, université de Franche-Comté, CNRS, 4, place Tharradin, 25200 Montbéliard, France.

出版信息

Cancer Radiother. 2024 Aug;28(4):402-414. doi: 10.1016/j.canrad.2024.03.005. Epub 2024 Aug 12.

Abstract

Over the last decades, the use of artificial intelligence, machine learning and deep learning in medical fields has skyrocketed. Well known for their results in segmentation, motion management and posttreatment outcome tasks, investigations of machine learning and deep learning models as fast dose calculation or quality assurance tools have been present since 2000. The main motivation for this increasing research and interest in artificial intelligence, machine learning and deep learning is the enhancement of treatment workflows, specifically dosimetry and quality assurance accuracy and time points, which remain important time-consuming aspects of clinical patient management. Since 2014, the evolution of models and architectures for dose calculation has been related to innovations and interest in the theory of information research with pronounced improvements in architecture design. The use of knowledge-based approaches to patient-specific methods has also considerably improved the accuracy of dose predictions. This paper covers the state of all known deep learning architectures and models applied to external radiotherapy with a description of each architecture, followed by a discussion on the performance and future of deep learning predictive models in external radiotherapy.

摘要

在过去的几十年中,人工智能、机器学习和深度学习在医学领域的应用呈爆炸式增长。它们在分割、运动管理和治疗后结果预测等任务中表现出色,自 2000 年以来,人们一直在研究机器学习和深度学习模型作为快速剂量计算或质量保证工具。人们对人工智能、机器学习和深度学习越来越感兴趣的主要动机是增强治疗工作流程,特别是剂量计算和质量保证的准确性和时间点,这些仍然是临床患者管理中耗时的重要方面。自 2014 年以来,剂量计算模型和架构的发展与信息研究理论的创新和兴趣密切相关,在架构设计方面取得了显著的改进。基于知识的方法在个体化方法中的应用也极大地提高了剂量预测的准确性。本文介绍了应用于外部放射治疗的所有已知深度学习架构和模型的现状,描述了每种架构,然后讨论了深度学习预测模型在外部放射治疗中的性能和未来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验