Peng Yingshu, Zhou Yuxia, Zhang Li, Fu Hongyan, Tang Guimei, Huang Guolin, Li Weidong
Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.
Yuelu Mountain Laboratory, Changsha, PR China.
Plant Methods. 2024 Aug 13;20(1):124. doi: 10.1186/s13007-024-01252-w.
Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within species.
To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%.
Experimental results demonstrate the complexity of the dataset while highlighting the considerable promise of PEFT methods within flower image classification. We believe that our work not only provides a practical tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/pengyingshu/Orchid2024 .
中国的蕙兰因其深厚的文化底蕴和重要的经济价值而备受珍视,由此产生了丰富多样的品种。然而,这些兰花品种正面临着种植方法不足和技术陈旧的挑战,包括品种误分类、鉴定复杂以及假冒产品泛滥。当前的商业技术和学术研究主要侧重于兰花的物种鉴定,而非深入研究物种内兰花品种的鉴定。
为弥补这一差距,作者花费一年多时间收集了一个名为Orchid2024的中国蕙兰品种图像数据集。该数据集包含超过150,000张图像,涵盖1,275个不同类别,涉及走访中国12个省级行政区的20个城市以收集相关数据。随后,我们引入了各种视觉参数高效微调(PEFT)方法来加速模型开发,实现了最高的top-1准确率86.14%和top-5准确率95.44%。
实验结果展示了数据集的复杂性,同时凸显了PEFT方法在花卉图像分类中的巨大潜力。我们相信,我们的工作不仅为兰花研究人员、种植者和市场参与者提供了一个实用工具,还为进一步探索细粒度图像分类任务提供了独特而有价值的资源。数据集和代码可在https://github.com/pengyingshu/Orchid2024获取。