Suppr超能文献

明智使用列线图:预测黑色素瘤前哨淋巴结阳性。

Using Nomograms Wisely: Predicting Sentinel Node Positivity in Melanoma.

机构信息

Department of Surgery, Tom Baker Cancer Centre, Calgary, AB, Canada.

Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.

出版信息

Ann Surg Oncol. 2024 Nov;31(12):8240-8244. doi: 10.1245/s10434-024-15891-9. Epub 2024 Aug 13.

Abstract

BACKGROUND

Four externally validated sentinel node biopsy (SNB) prediction nomograms exist for malignant melanoma that each incorporate different clinical and histopathologic variables, which can result in substantially different risk estimations for the same patient. We demonstrate this variability by using hypothetical melanoma cases.

METHODS

We compared the MSKCC and MIA calculators. Using a random number generator, 300 hypothetical thin melanoma "patients" were created with varying age, tumor thickness, Clark level, location on the body, ulceration, melanoma subtype, mitosis, and lymphovascular invasion (LVI). The chi-square test was used to detect statistically significant differences in risk estimations between nomograms. Multivariate linear regression was used to determine the most relevant contributing pathologic features in cases where the predictions diverged by > 10%.

RESULTS

Of 300 randomly generated cases, 164 were deleted as their clinical scenarios were unlikely. The MSKCC nomogram generally calculated a lower risk than the MIA (p < 0.001). The highest risk score attained for any "patient" using MSKCC calculator was 15% achieved in one of 136 patients (0.7%), whereas using the MIA nomogram, 58 of 136 patients (43%, p < 0.001) had predicted risk >15%. Regression analysis on patients with >10% difference between nomograms revealed LVI (26, p < 0.001), mitosis (14, p < 0.001), and melanoma subtype (8, p < 0.001) were the factors with high coefficients within MIA that were not present in MSKCC.

CONCLUSIONS

Nomograms are useful tools when predicting SNB risk but provide risk outputs that are quite sensitive to included predictors.

摘要

背景

目前有四种经过外部验证的黑色素瘤前哨淋巴结活检(SNB)预测诺莫图,它们各自纳入了不同的临床和组织病理学变量,这可能导致对同一患者的风险评估存在很大差异。我们通过使用假设的黑色素瘤病例来证明这种可变性。

方法

我们比较了 MSKCC 和 MIA 计算器。使用随机数生成器,创建了 300 个具有不同年龄、肿瘤厚度、Clark 分级、身体部位、溃疡、黑色素瘤亚型、有丝分裂和淋巴管浸润(LVI)的假设薄型黑色素瘤“患者”。使用卡方检验检测诺莫图之间风险估计的统计学显著差异。多元线性回归用于确定在预测结果相差 >10%的情况下最相关的病理特征。

结果

在 300 个随机生成的病例中,有 164 个被删除,因为它们的临床情况不太可能。MSKCC 诺莫图通常计算的风险低于 MIA(p<0.001)。使用 MSKCC 计算器,任何“患者”获得的最高风险评分是在 136 名患者中的 1 名(0.7%)中达到的 15%,而使用 MIA 诺莫图,136 名患者中有 58 名(43%,p<0.001)预测风险>15%。对诺莫图之间差异>10%的患者进行回归分析显示,LVI(26,p<0.001)、有丝分裂(14,p<0.001)和黑色素瘤亚型(8,p<0.001)是 MIA 中具有高系数的因素,但在 MSKCC 中不存在。

结论

诺莫图是预测 SNB 风险的有用工具,但它们提供的风险输出对纳入的预测因素非常敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验