Suppr超能文献

受生物启发的毛细管晶体管。

Bioinspired Capillary Transistors.

作者信息

Liu Xiaojiang, Gao Ming, Li Boyuan, Liu Ruoyu, Chong Zhejun, Gu Zhongze, Zhou Kun

机构信息

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Adv Mater. 2024 Oct;36(41):e2310797. doi: 10.1002/adma.202310797. Epub 2024 Aug 13.

Abstract

Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil-water separation. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (<30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by 3D printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the theoretical limit. The overhangs can partially overlap the forward microchannels of the front structures without direct contact, thus enhancing the Laplace pressure difference and capillary force simultaneously. Based on asymmetric and symmetric re-entrant structures, capillary transistors are proposed and realized to programmably adjust the capillary direction, height, and width, which are envisioned to function as switches/valves and amplifiers/attenuators for highly efficient liquid patterning, desalination, and biochemical microreaction in 3D space.

摘要

受猪笼草唇、南洋杉叶、蝴蝶翅膀等上单向液体铺展的启发,人们开发了各种微流控装置用于集水、灌溉、物理/化学反应和油水分离。尽管取得了长足进展,但大多数天然和人工结构都无法增强拉普拉斯压差或毛细力,因此单向毛细高度较低(<30毫米)。在这项工作中,通过3D打印制造了具有长悬垂和连接的前向/横向微通道的不对称凹腔结构,水的单向毛细高度显著增加至102.3毫米,这大约对应于理论极限。悬垂部分可以部分重叠前面结构的前向微通道而不直接接触,从而同时增强拉普拉斯压差和毛细力。基于不对称和对称凹腔结构,提出并实现了毛细晶体管,以可编程方式调节毛细方向、高度和宽度,设想其可作为开关/阀门以及放大器/衰减器,用于3D空间中的高效液体图案化、脱盐和生化微反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验