Cao Yangyang, Xu Zhenzhen, Zhao Xinyuqi, Yang Yong, Liu Haoran, Wang Pingyang, Yu Miao, Li Hao, Fu Hongbing
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
Chem Sci. 2024 Aug 7;15(34):13930-6. doi: 10.1039/d4sc02867h.
Investigating the impact of exciton-vibration coupling (EC) of molecular aggregates on regulating the excited-state dynamics and controlling room temperature phosphorescence (RTP) emissions is crucial and challenging. We designed and synthesized ArBFO molecules and cultured two crystals with similar molecular packing and completely different luminescent mechanisms from B-form fluorescence to G-form RTP. The mechanism study combining measurement of photophysical properties, time-resolved fluorescence analysis, X-ray diffraction analysis, and theoretical calculations shows that tiny changes in molecular stacking amplify the EC value from B-form to G-form H-aggregates. The larger EC value accelerates the ISC process and suppresses the radiative singlet decay. Meanwhile, the stronger intermolecular interaction restricts non-radiative transitions. All of these facilitate green RTP emission in G-form aggregates. When treated with pressure-heating cycles, the transformation between B-form and G-form aggregates leads to a reversible blue fluorescence/green RTP switch with good reproducibility and photostability. Moreover, their potential in multi-level information encryption and anti-counterfeiting application has been well demonstrated. The results of this research deepen the understanding of the effect of aggregation on the luminescence mechanism and provide a new design guidance for developing smart materials with good performance.
研究分子聚集体的激子-振动耦合(EC)对调节激发态动力学和控制室温磷光(RTP)发射的影响至关重要且具有挑战性。我们设计并合成了ArBFO分子,并培养了两种晶体,它们具有相似的分子堆积方式,但发光机制却截然不同,从B型荧光转变为G型RTP。结合光物理性质测量、时间分辨荧光分析、X射线衍射分析和理论计算的机理研究表明,分子堆积的微小变化会使从B型到G型H聚集体的EC值增大。较大的EC值加速了系间窜越(ISC)过程并抑制了辐射单重态衰变。同时,更强的分子间相互作用限制了非辐射跃迁。所有这些都促进了G型聚集体中的绿色RTP发射。经过压力-加热循环处理后,B型和G型聚集体之间的转变导致了具有良好重现性和光稳定性的可逆蓝色荧光/绿色RTP开关。此外,它们在多级信息加密和防伪应用中的潜力也得到了充分证明。这项研究的结果加深了对聚集对发光机制影响的理解,并为开发具有良好性能的智能材料提供了新的设计指导。