Université Côte d'Azur, CNRS, INPHYNI , Nice, France.
Université Grenoble Alpes, CNRS, LIPhy , Grenoble, France.
J R Soc Interface. 2024 Aug;21(217):20240103. doi: 10.1098/rsif.2024.0103. Epub 2024 Aug 14.
Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in (maidenhair fern) leaves, presented in Brodribb . (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. , 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
干旱通过在植物水力系统中产生阻止汁液运输的气泡,对全球森林的生存构成了重大威胁。然而,在叶脉尺度上气泡进入和传播的详细机制仍难以捉摸。基于我们开发的仿生叶片模型,我们提出了在 Brodribb 中展示的(铁线蕨)叶片中的空气栓塞传播的直接比较。(Brodribb TJ、Bienaimé D、Marmottant P. 2016 年,揭示了叶片网络在胁迫下的灾难性失效。,4865-4869(doi:10.1073/pnas.1522569113))和我们仿生叶片中的空气栓塞传播。特别是,我们证明了在 叶片中观察到的栓塞传播的颠簸动力学可以通过在我们仿生叶脉的截面中引入微米级别的收缩来恢复,这模拟了真实叶片中边界坑膜中的纳米孔。我们表明,通过将由收缩引起的压力变化和顺应性微通道体积的变化耦合的简单模型,可以恢复传播中的间歇性。我们的研究标志着使用一组可控制且易于调整的组件复制真实叶片中栓塞传播特定方面的仿生叶片设计迈出了一步。这种仿生叶片构成了一个有前途的物理模拟,并为未来完全体现栓塞真实叶片独特物理特征的增强奠定了基础。