Gauci François-Xavier, Jami Ludovic, Keiser Ludovic, Cohen Céline, Noblin Xavier
CNRS UMR 7010, Institut de Physique de Nice, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azur, France.
Interface Focus. 2025 May 16;15(2):20240060. doi: 10.1098/rsfs.2024.0060.
The nucleation and/or spreading of bubbles in water under tension (due to water evaporation) can be problematic for most plants along the ascending sap network-from roots to leaves-called xylem. Due to global warming, trees facing drought conditions are particularly threatened by the formation of such embolisms, which hinders sap flow and can ultimately be fatal. Polydimethylsiloxane (PDMS)-based biomimetic leaves simulating evapotranspiration have demonstrated that, in a linear configuration, the existence of a slender constriction in the channel allows for the creation of intermittent embolism propagation (as an interaction between the elasticity of the biomimetic leaf and the capillary forces at the air/water interfaces) (Keiser . 2022 , A52 (doi:10.1017/jfm.2022.733); Keiser . 2024 , 20240103 (doi:10.1098/rsif.2024.0103)). Here, we use analogue PDMS-based biomimetic leaves in one dimension and two dimensions. To better explore the embolism spreading mechanism, we add to the setup an additional technique, allowing to measure directly the microchannel's ceiling deformation versus time, which corresponds to the pressure variations. We present here such a method that allows one to have quantitative insights into the dynamics of embolism spreading. The coupling between channel deformations and the Laplace pressure threshold explains the observed elastocapillary dynamics.
在张力作用下(由于水分蒸发),水中气泡的成核和/或扩散对于大多数植物沿着从根部到叶子的上升汁液网络(称为木质部)来说可能是个问题。由于全球变暖,面临干旱条件的树木尤其受到此类栓塞形成的威胁,这会阻碍汁液流动并最终可能致命。基于聚二甲基硅氧烷(PDMS)的模拟蒸散的仿生叶片已经证明,在直线配置中,通道中细长缩窄的存在允许产生间歇性栓塞传播(作为仿生叶片弹性与气/水界面处毛细力之间的相互作用)(凯泽,2022年,A52(doi:10.1017/jfm.2022.733);凯泽,2024年,20240103(doi:10.1098/rsif.2024.0103))。在这里,我们使用一维和二维的基于PDMS的模拟仿生叶片。为了更好地探索栓塞扩散机制,我们在实验装置中增加了一项额外技术,能够直接测量微通道顶部变形随时间的变化,这与压力变化相对应。我们在此展示一种方法,该方法能够让人对栓塞扩散动力学有定量的见解。通道变形与拉普拉斯压力阈值之间的耦合解释了所观察到的弹性毛细动力学。