Sun Jie, Tang Cheng, Li Haitao, Kang Zizhuo, Zhu Guanjia, Du Aijun, Zhang Haijiao
School of Environmental and Chemical Engineering, Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia.
ChemSusChem. 2025 Jan 14;18(2):e202401396. doi: 10.1002/cssc.202401396. Epub 2024 Oct 18.
The rational design of MoS/carbon composites have been widely used to improve the lithium storage capability. However, their deep applications remain a big challenge due to the slow electrochemical reaction kinetics of MoS and weak bonding between MoS and carbon substrates. In this work, anthracite-derived porous carbon (APC) is sequential coated by TiO nanoparticles and MoS nanosheets via a chemical activation and two-step hydrothermal method, forming the unique APC@TiO@MoS ternary composite. The dynamic analysis, in-situ electrochemical impedance spectroscopy as well as theoretical calculation together demonstrate that this innovative design effectively improves the ion/electron transport behavior and alleviates the large volume expansion during cycles. Furthermore, the introduction of middle TiO layer in the composite significantly strengthens the mechanical stability of the entire electrode. As expected, the as-prepared APC@TiO@MoS anode displays a high lithium storage capacity with a reversible capacity of 655.8 mAh g after 150 cycles at 200 mA g, and robust cycle stability. Impressively, even at a high current density of 2 A g, the electrode maintains a superior reversible capacity of 597.7 mAh g after 1100 cycles. This design highlights a feasibility for the development of low-cost anthracite-derived porous carbon-based electrodes.
二硫化钼/碳复合材料的合理设计已被广泛用于提高锂存储能力。然而,由于二硫化钼缓慢的电化学反应动力学以及二硫化钼与碳基底之间的弱结合,它们的深入应用仍然是一个巨大的挑战。在这项工作中,通过化学活化和两步水热法,将无烟煤衍生的多孔碳(APC)依次用二氧化钛纳米颗粒和二硫化钼纳米片包覆,形成独特的APC@TiO@MoS三元复合材料。动力学分析、原位电化学阻抗谱以及理论计算共同表明,这种创新设计有效地改善了离子/电子传输行为,并减轻了循环过程中的大体积膨胀。此外,复合材料中中间二氧化钛层的引入显著增强了整个电极的机械稳定性。正如预期的那样,所制备的APC@TiO@MoS阳极在200 mA g下循环150次后显示出高锂存储容量,可逆容量为655.8 mAh g,并且具有稳健的循环稳定性。令人印象深刻的是,即使在2 A g的高电流密度下,该电极在1100次循环后仍保持597.7 mAh g的优异可逆容量。这种设计突出了开发低成本无烟煤衍生的多孔碳基电极的可行性。