Suppr超能文献

静电相互作用驱动制备具有可控弹性性能的大面积、独立式纳米颗粒表面活性剂膜。

Electrostatic Interaction-Driven Fabrication of Large-Area, Freestanding Nanoparticle Surfactant Membranes with Controllable Elastic Properties.

作者信息

Gu Sheng, Wang Dong

机构信息

State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45778-45787. doi: 10.1021/acsami.4c11820. Epub 2024 Aug 14.

Abstract

Nanoparticle surfactants assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Understanding and actively tuning the mechanical properties of the generated membranes, which comprise the nanoparticle surfactants, are of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we present electrostatic interaction-driven fabrication of freestanding and close-packed SiO surfactant membranes with diameters up to 0.10 mm. The membranes of 20-30 nm in thickness were spanned over holes with a diameter of 2 μm, exhibiting a Young's modulus ranging from 1.5 to 5.9 GPa. The controllable elastic properties of the fabricated nanoparticle surfactant membranes are found to be dictated by the strength of interactions between nanoparticles and ligands, between ligands and ligands, and between the nanoparticle surfactants. The results present an efficient approach for fabricating and developing nanoparticle surfactant-based large-area, freestanding, and ultrathin membranes with finely tunable mechanical properties on a large scale.

摘要

在水-油界面组装的纳米颗粒表面活性剂可显著降低界面张力,并可用于稳定液体。理解并积极调节由纳米颗粒表面活性剂构成的生成膜的机械性能,对于纳米颗粒的界面行为具有重要的基础研究意义,同时对于水净化、药物封装、提高采收率和创新能量转换应用也具有重要意义。在此,我们展示了通过静电相互作用驱动制备直径达0.10毫米的独立且紧密堆积的SiO表面活性剂膜。厚度为20 - 30纳米的膜跨越直径为2微米的孔,其杨氏模量范围为1.5至5.9吉帕。研究发现,所制备的纳米颗粒表面活性剂膜的可控弹性性能取决于纳米颗粒与配体之间、配体与配体之间以及纳米颗粒表面活性剂之间相互作用的强度。这些结果为大规模制备和开发具有精细可调机械性能的基于纳米颗粒表面活性剂的大面积、独立且超薄的膜提供了一种有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验