Suppr超能文献

0.35TMR-Linac 上低场 MP2RAGE T 映射的优化和验证:实现缺氧生物标志物的自适应剂量描绘。

Optimization and validation of low-field MP2RAGE T mapping on 0.35T MR-Linac: Toward adaptive dose painting with hypoxia biomarkers.

机构信息

Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

Harvard-MIT Health Sciences and Technology, Harvard Medical School, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Med Phys. 2024 Nov;51(11):8124-8140. doi: 10.1002/mp.17353. Epub 2024 Aug 14.

Abstract

BACKGROUND

Stereotactic MR-guided Adaptive Radiation Therapy (SMART) dose painting for hypoxia has potential to improve treatment outcomes, but clinical implementation on low-field MR-Linac faces substantial challenges due to dramatically lower signal-to-noise ratio (SNR) characteristics. While quantitative MRI and T mapping of hypoxia biomarkers show promise, T-to-noise ratio (TNR) optimization at low fields is paramount, particularly for the clinical implementation of oxygen-enhanced (OE)-MRI. The 3D Magnetization Prepared (2) Rapid Gradient Echo (MP2RAGE) sequence stands out for its ability to acquire homogeneous T-weighted contrast images with simultaneous T mapping.

PURPOSE

To optimize MP2RAGE for low-field T mapping; conduct experimental validation in a ground-truth phantom; establish feasibility and reproducibility of low-field MP2RAGE acquisition and T mapping in healthy volunteers.

METHODS

The MP2RAGE optimization was performed to maximize the contrast-to-noise ratio (CNR) of T values in white matter (WM) and gray matter (GM) brain tissues at 0.35T. Low-field MP2RAGE images were acquired on a 0.35T MR-Linac (ViewRay MRIdian) using a multi-channel head coil. Validation of T mapping was performed with a ground-truth Eurospin phantom, containing inserts of known T values (400-850 ms), with one and two average (1A and 2A) MP2RAGE scans across four acquisition sessions, resulting in eight T maps. Mean (± SD) T relative error, TNR, and intersession coefficient of variation (CV) were determined. Whole-brain MP2RAGE scans were acquired in 5 healthy volunteers across two sessions (A and B) and T maps were generated. Mean (± SD) T values for WM and GM were determined. Whole-brain T histogram analysis was performed, and reproducibility was determined with the CV between sessions. Voxel-by-voxel T difference maps were generated to evaluate 3D spatial variation.

RESULTS

Low-field MP2RAGE optimization resulted in parameters: MP2RAGE of 3250 ms, inversion times (TI/TI) of 500/1200 ms, and flip angles (α/α) of 7/5°. Eurospin T maps exhibited a mean (± SD) relative error of 3.45% ± 1.30%, TNR of 20.13 ± 5.31, and CV of 2.22% ± 0.67% across all inserts. Whole-brain MP2RAGE images showed high anatomical quality with clear tissue differentiation, resulting in mean (± SD) T values: 435.36 ± 10.01 ms for WM and 623.29 ± 14.64 ms for GM across subjects, showing excellent concordance with literature. Whole-brain T histograms showed high intrapatient and intersession reproducibility with characteristic intensity peaks consistent with voxel-level WM and GM T values. Reproducibility analysis revealed a CV of 0.46% ± 0.31% and 0.35% ± 0.18% for WM and GM, respectively. Voxel-by-voxel T difference maps show a normal 3D spatial distribution of noise in WM and GM.

CONCLUSIONS

Low-field MP2RAGE proved effective in generating accurate, reliable, and reproducible T maps with high TNR in phantom studies and in vivo feasibility established in healthy volunteers. While current work is focused on refining the MP2RAGE protocol to enable clinically efficient OE-MRI, this study establishes a foundation for TOLD T mapping for hypoxia biomarkers. This advancement holds the potential to facilitate a paradigm shift toward MR-guided biological adaptation and dose painting by leveraging 3D hypoxic spatial distributions and improving outcomes in conventionally challenging-to-treat cancers.

摘要

背景

立体定向磁共振引导自适应放疗(SMART)的缺氧剂量描绘具有改善治疗效果的潜力,但由于信噪比(SNR)特征显著降低,临床实施低场磁共振直线加速器(MR-Linac)面临重大挑战。虽然缺氧生物标志物的定量 MRI 和 T 映射显示出前景,但在低场进行 T 到噪声比(TNR)优化至关重要,特别是对于氧增强(OE)-MRI 的临床实施。三维磁化准备(2)快速梯度回波(MP2RAGE)序列因其能够同时进行 T 映射而获得均匀的 T 加权对比图像的能力而脱颖而出。

目的

优化 MP2RAGE 进行低场 T 映射;在真实世界的体模中进行实验验证;在健康志愿者中建立低场 MP2RAGE 采集和 T 映射的可行性和可重复性。

方法

在 0.35T 上对 MP2RAGE 进行优化,以最大化脑白质(WM)和灰质(GM)脑组织 T 值的对比噪声比(CNR)。使用多通道头部线圈在 0.35T MR-Linac(ViewRay MRIdian)上采集低场 MP2RAGE 图像。使用包含已知 T 值(400-850ms)的 Eurospin 体模进行 T 映射验证,每个体模有一个和两个平均(1A 和 2A)MP2RAGE 扫描,共四个采集阶段,生成 8 个 T 图。确定平均(±SD)T 相对误差、TNR 和采集间的变异系数(CV)。在 5 名健康志愿者中进行了两次采集(A 和 B)的全脑 MP2RAGE 扫描,并生成了 T 图。确定 WM 和 GM 的平均(±SD)T 值。对全脑 T 直方图进行分析,并通过采集间的 CV 确定重复性。生成体素级 T 差异图,以评估 3D 空间变化。

结果

低场 MP2RAGE 优化后的参数为:MP2RAGE 为 3250ms,反转时间(TI/TI)为 500/1200ms,翻转角(α/α)为 7/5°。Eurospin T 图的平均(±SD)相对误差为 3.45%±1.30%,TNR 为 20.13±5.31,CV 为 2.22%±0.67%,涵盖所有插针。全脑 MP2RAGE 图像显示出高解剖质量,具有清晰的组织分化,导致 WM 的平均(±SD)T 值为 435.36±10.01ms,GM 为 623.29±14.64ms,与文献高度一致。全脑 T 直方图显示出高的患者内和采集间的可重复性,具有与体素水平 WM 和 GM T 值一致的特征强度峰。重复性分析显示 WM 和 GM 的 CV 分别为 0.46%±0.31%和 0.35%±0.18%。体素级 T 差异图显示 WM 和 GM 中的噪声具有正常的 3D 空间分布。

结论

低场 MP2RAGE 在体模研究中证明了在生成准确、可靠和可重复的 T 图方面的有效性,具有高 TNR,并在健康志愿者中确立了体内可行性。虽然目前的工作重点是改进 MP2RAGE 协议,以实现临床高效的 OE-MRI,但这项研究为 TOLD 缺氧生物标志物的 T 映射奠定了基础。这一进展有可能通过利用 3D 缺氧空间分布并改善传统上具有挑战性的癌症的治疗效果,推动向磁共振引导的生物适应性和剂量描绘的范式转变。

相似文献

2
Rapid multicontrast brain imaging on a 0.35T MR-linac.
Med Phys. 2020 Sep;47(9):4064-4076. doi: 10.1002/mp.14251. Epub 2020 Jul 6.
4
Whole brain and deep gray matter structure segmentation: Quantitative comparison between MPRAGE and MP2RAGE sequences.
PLoS One. 2021 Aug 6;16(8):e0254597. doi: 10.1371/journal.pone.0254597. eCollection 2021.
6
Optimization of MP2RAGE T1 mapping with radial view-ordering for deep brain stimulation targeting at 7 T MRI.
Magn Reson Imaging. 2023 Jul;100:55-63. doi: 10.1016/j.mri.2023.03.007. Epub 2023 Mar 15.
9
MP2RAGE for deep gray matter measurement of the brain: A comparative study with MPRAGE.
J Magn Reson Imaging. 2016 Jan;43(1):55-62. doi: 10.1002/jmri.24960. Epub 2015 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验