Programa de Pós Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
Instituto Aqualie, Juiz de Fora, Minas Gerais, Brazil.
J Acoust Soc Am. 2024 Aug 1;156(2):1070-1080. doi: 10.1121/10.0028170.
This study focuses on the acoustic classification of delphinid species at the southern continental slope of Brazil. Recordings were collected between 2013 and 2015 using towed arrays and were processed using a classifier to identify the species in the recordings. Using Raven Pro 1.6 software (Cornell Laboratory of Ornithology, Ithaca, NY), we analyzed whistles for species identification. The random forest algorithm in R facilitates classification analysis based on acoustic parameters, including low, high, delta, center, beginning, and ending frequencies, and duration. Evaluation metrics, such as correct and incorrect classification percentages, global accuracy, balanced accuracy, and p-values, were employed. Receiver operating characteristic curves and area-under-the-curve (AUC) values demonstrated well-fitting models (AUC ≥ 0.7) for species definition. Duration and delta frequency emerged as crucial parameters for classification, as indicated by the decrease in mean accuracy. Multivariate dispersion plots visualized the proximity between acoustic and visual match data and exclusively acoustic encounter (EAE) data. The EAE results classified as Delphinus delphis (n = 6), Stenella frontalis (n = 3), and Stenella longirostris (n = 2) provide valuable insights into the presence of these species between approximately 23° and 34° S in Brazil. This study demonstrates the effectiveness of acousting classification in discriminating delphinids through whistle parameters.
本研究专注于巴西南部大陆坡海豚物种的声学分类。记录是在 2013 年至 2015 年期间使用拖曳式数组收集的,并使用分类器对记录中的物种进行处理。我们使用 Raven Pro 1.6 软件(纽约州伊萨卡市康奈尔鸟类学实验室)分析口哨声以识别物种。R 中的随机森林算法便于根据声学参数进行分类分析,包括低频、高频、德尔塔、中心、起始和结束频率以及持续时间。评估指标,如正确和错误分类百分比、总体准确性、平衡准确性和 p 值,都得到了应用。接收者操作特征曲线和曲线下面积(AUC)值表明,对于物种定义,模型拟合良好(AUC≥0.7)。持续时间和德尔塔频率是分类的关键参数,这表明平均准确性降低。多元散点图可视化了声学和视觉匹配数据以及仅声学接触(EAE)数据之间的接近程度。EAE 结果将 Delphinus delphis(n=6)、 Stenella frontalis(n=3)和 Stenella longirostris(n=2)分类为巴西南部约 23°至 34°之间存在这些物种提供了有价值的见解。本研究证明了声学分类在通过口哨参数区分海豚方面的有效性。