Lee Tae Hoon, Balcik Marcel, Wu Wan-Ni, Pinnau Ingo, Smith Zachary P
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
Sci Adv. 2024 Aug 16;10(33):eadp6666. doi: 10.1126/sciadv.adp6666. Epub 2024 Aug 14.
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (640 g mol) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.
用一种可扩展的方法微调聚合物中的微孔结构在节能分子分离方面具有巨大潜力。在此,我们报道了一种双相分子工程方法,通过界面聚合制备微孔聚合物纳米薄膜。通过整合两个产生微孔的单元,如水溶性的特罗格碱二胺(TBD)和扭曲的螺二芴(SBF)结构单元,所得的TBD-SBF聚酰胺表现出前所未有的高比表面积。与通过传统化学方法制备的对照膜相比,超薄的TBD-SBF膜(约20纳米)的溶剂渗透率提高了多达220倍,同时具有适中的截留分子量(约640克/摩尔),性能优于目前报道的聚合物膜。我们还通过探索水相单体的异构效应以控制微孔结构,突出了基于SBF的微孔聚酰胺在烃类分离方面的巨大潜力。