Silvera Batista Carlos A, Wang Kun, Blake Hannah, Nwosu-Madueke Vivian, Marbach Sophie
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States; Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, 37205, United States.
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States.
J Colloid Interface Sci. 2025 Jan;677(Pt B):171-180. doi: 10.1016/j.jcis.2024.08.004. Epub 2024 Aug 6.
Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows.
Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium.
As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.
在很大的参数空间内,电场能够调节胶体相互作用和力,从而产生各种静态和动态结构。然而,到目前为止,场驱动的相互作用仅限于偶极 - 偶极和流体动力学贡献。尽管如此,在这项工作中,我们提出在适当条件下,电场还能基于局部化学场和扩散电泳流诱导相互作用。
在此,我们提出一种在电场下生成和测量三维化学梯度的策略。在这种方法中,电极处的法拉第反应会诱导全局pH梯度,该梯度通过电扩散电泳驱动长程传输。同时,电场通过使粒子的双层远离平衡来诱导局部pH梯度。
结果,虽然全局pH梯度导致远离电极的二维聚焦,但局部pH梯度会在第三维诱导聚集。有证据表明存在一种基于扩散电泳的相互作用机制。粒子间相互作用对表面化学、zeta电位和粒子直径有很强的依赖性。此外,通过调节电场的电压和频率可以很容易地调节pH梯度。对于较大的佩克莱数,我们观察到粒子出现类似趋化作用的集体坍缩。值得注意的是,这种坍缩在粒子表面没有反应的情况下发生。通过混合不同尺寸的粒子,我们还通过实验和布朗动力学模拟证明了非互易相互作用的出现,即小粒子更倾向于被大粒子吸引。