Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea.
POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea.
Biofabrication. 2024 Aug 23;16(4). doi: 10.1088/1758-5090/ad6f46.
Hyalocytes, which are considered to originate from the monocyte/macrophage lineage, play active roles in vitreous collagen and hyaluronic acid synthesis. Obtaining a hyalocyte-compatible bioink during the 3D bioprinting of eye models is challenging. In this study, we investigated the suitability of a cartilage-decellularized extracellular matrix (dECM)-based bioink for printing a vitreous body model. Given that achieving a 3D structure and environment identical to those of the vitreous body necessitates good printability and biocompatibility, we examined the mechanical and biological properties of the developed dECM-based bioink. Furthermore, we proposed a 3D bioprinting strategy for volumetric vitreous body fabrication that supports cell viability, transparency, and self-sustainability. The construction of a 3D structure composed of bioink microfibers resulted in improved transparency and hyalocyte-like macrophage activity in volumetric vitreous mimetics, mimicking real vitreous bodies. The results indicate that our 3D structure could serve as a platform for drug testing in disease models and demonstrate that the proposed printing technology, utilizing a dECM-based bioink and volumetric vitreous body, has the potential to facilitate the development of advanced eye models for future studies on floater formation and visual disorders.
玻璃体细胞被认为来源于单核细胞/巨噬细胞系,在玻璃体胶原和透明质酸合成中发挥积极作用。在眼部模型的 3D 生物打印过程中,获得一种与玻璃体细胞兼容的生物墨水具有挑战性。在本研究中,我们研究了基于脱细胞软骨细胞外基质 (dECM)的生物墨水用于打印玻璃体模型的适用性。鉴于要实现与玻璃体完全相同的 3D 结构和环境,需要良好的打印性能和生物相容性,因此我们检查了所开发的基于 dECM 的生物墨水的机械和生物学特性。此外,我们提出了一种用于体积玻璃体制造的 3D 生物打印策略,支持细胞活力、透明度和自持续性。由生物墨水微纤维组成的 3D 结构的构建导致体积玻璃体模拟物中的透明度和类玻璃体细胞样巨噬细胞活性得到改善,模拟了真实的玻璃体。结果表明,我们的 3D 结构可以作为疾病模型中药物测试的平台,并证明了所提出的利用基于 dECM 的生物墨水和体积玻璃体的打印技术有潜力促进用于浮子形成和视觉障碍等未来研究的先进眼部模型的发展。