Zheng Niannian, Shardt Yuri A W, Luan Xiaoli, Liu Fei
Department of Automaton Engineering, Technical University of Ilmenau, 98693 Ilmenau, Germany; Institute of Automation, Jiangnan University, 214122 Wuxi, China.
Department of Automaton Engineering, Technical University of Ilmenau, 98693 Ilmenau, Germany.
ISA Trans. 2024 Oct;153:243-261. doi: 10.1016/j.isatra.2024.08.001. Epub 2024 Aug 5.
A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.
提出了一种用于在线预测以及过程质量指标实时优化的监督概率动态控制潜变量(SPDCLV)模型。与现有的概率潜变量模型相比,该方法的关键优势在于明确地对从操纵输入到质量模式的动态因果关系进行建模。这是通过精心设计的动态控制贝叶斯网络来实现的。此外,还设计了期望最大化、前向滤波和后向平滑算法来学习SPDCLV模型。对于工程应用,提出了一个基于模式的质量预测和优化框架,在此框架下探索了模式滤波和基于模式的软传感器用于在线质量预测。此外,通过直接将模式控制到期望条件可以实现质量优化。最后,在工业初级研磨回路和数值示例上的案例研究说明了SPDCLV方法的优点,即它可以充分对过程动态进行建模,有效地预测和优化质量指标,并监控过程。