Suppr超能文献

基于可微光线追踪的用于聚光太阳能发电厂现场计量的自动定日镜学习

Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing.

作者信息

Pargmann Max, Ebert Jan, Götz Markus, Maldonado Quinto Daniel, Pitz-Paal Robert, Kesselheim Stefan

机构信息

Institute of Solar Research, German Aerospace Center (DLR), Köln, Germany.

Helmholtz AI, Köln, Germany.

出版信息

Nat Commun. 2024 Aug 14;15(1):6997. doi: 10.1038/s41467-024-51019-z.

Abstract

Concentrating solar power plants are a clean energy source capable of competitive electricity generation even during night time, as well as the production of carbon-neutral fuels, offering a complementary role alongside photovoltaic plants. In these power plants, thousands of mirrors (heliostats) redirect sunlight onto a receiver, potentially generating temperatures exceeding 1000°C. Practically, such efficient temperatures are never attained. Several unknown, yet operationally crucial parameters, e.g., misalignment in sun-tracking and surface deformations can cause dangerous temperature spikes, necessitating high safety margins. For competitive levelized cost of energy and large-scale deployment, in-situ error measurements are an essential, yet unattained factor. To tackle this, we introduce a differentiable ray tracing machine learning approach that can derive the irradiance distribution of heliostats in a data-driven manner from a small number of calibration images already collected in most solar towers. By applying gradient-based optimization and a learning non-uniform rational B-spline heliostat model, our approach is able to determine sub-millimeter imperfections in a real-world setting and predict heliostat-specific irradiance profiles, exceeding the precision of the state-of-the-art and establishing full automatization. The new optimization pipeline enables concurrent training of physical and data-driven models, representing a pioneering effort in unifying both paradigms for concentrating solar power plants and can be a blueprint for other domains.

摘要

聚光太阳能发电厂是一种清洁能源,即使在夜间也能够进行具有竞争力的发电,还能生产碳中和燃料,与光伏电站起到互补作用。在这些发电厂中,数千面镜子(定日镜)将阳光反射到接收器上,有可能产生超过1000°C的温度。实际上,这样的高效温度从未实现过。一些未知但在运行中至关重要的参数,例如太阳跟踪中的对准误差和表面变形,可能会导致危险的温度峰值,因此需要很高的安全裕度。为了实现具有竞争力的平准化能源成本和大规模部署,现场误差测量是一个至关重要但尚未实现的因素。为了解决这个问题,我们引入了一种可微光线追踪机器学习方法,该方法可以从大多数太阳能塔已经收集的少量校准图像中,以数据驱动的方式得出定日镜的辐照度分布。通过应用基于梯度的优化和学习非均匀有理B样条定日镜模型,我们的方法能够在实际环境中确定亚毫米级的缺陷,并预测特定定日镜的辐照度分布,超过了现有技术的精度并实现了完全自动化。新的优化管道能够同时训练物理模型和数据驱动模型,这是统一聚光太阳能发电厂的这两种范式的开创性努力,并且可以成为其他领域的蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df04/11324880/91c1dae6b3dc/41467_2024_51019_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验