Lee Jaeran, Ha Ji Won
Department of Chemistry, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan 44610, South Korea.
Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan 44610, South Korea.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45763-45770. doi: 10.1021/acsami.4c10847. Epub 2024 Aug 14.
Chemical interface damping (CID) is a recently proposed plasmon-damping pathway based on the interfacial hot-electron transfer from metal to adsorbate molecules. However, the in situ reversible tuning of CID in single gold nanorods (AuNRs) has remained a considerable challenge. In this study, we used total internal reflection scattering microscopy and spectroscopy to investigate the CID induced by -aminoazobenzene (-AAB), which has fast photoisomerization characteristics, attached to single AuNRs. We demonstrated the in situ reversible tuning of CID in single AuNRs by switching between ultraviolet (UV, 365 nm) and visible (vis, 465 nm) irradiation to induce photoresponsive structural conversions between the cis and trans forms of -AAB in ethanol, leading to different lowest unoccupied molecular orbital (LUMO) energies for both forms. The localized surface plasmon resonance (LSPR) line width was wide under vis irradiation but narrow under UV irradiation, indicating that hot electrons are more efficiently transferred to --AAB with a low LUMO energy level. We further investigated the in situ photoreversible tuning of CID by manipulating supramolecular host-guest interactions between cucurbit[8]uril (CB[8]) and -AAB in the single AuNRs. Additionally, real-time in situ reversible tuning of CID in single AuNRs was achieved through photonic switching of the cis-trans forms of -AAB inside CB[8]. The LSPR line width was narrow under vis irradiation but gradually widened under UV irradiation before narrowing again upon returning to vis irradiation, unlike the case with -AAB only. These results can be ascribed to the fact that --AAB completely encapsulated within CB[8] in water is thermodynamically more favorable than --AAB. Therefore, we have discovered a new strategy for tuning the CID by performing -AAB photoisomerization and adjusting the wavelength of incident light in single AuNRs. In addition, this study demonstrates that CID can be effectively applied to the development of biosensors to detect guest molecules and their structural changes inside the cavity of CB[8] in single AuNRs.
化学界面阻尼(CID)是最近提出的一种基于界面热电子从金属转移到吸附分子的等离子体阻尼途径。然而,在单个金纳米棒(AuNRs)中原位可逆调节CID仍然是一个巨大的挑战。在本研究中,我们使用全内反射散射显微镜和光谱来研究附着在单个AuNRs上的具有快速光异构化特性的对氨基偶氮苯(-AAB)所诱导的CID。我们通过在紫外光(UV,365 nm)和可见光(vis,465 nm)照射之间切换,以诱导乙醇中-AAB顺式和反式形式之间的光响应结构转换,从而证明了在单个AuNRs中CID的原位可逆调节,这导致两种形式具有不同的最低未占分子轨道(LUMO)能量。在可见光照射下,局域表面等离子体共振(LSPR)线宽较宽,而在紫外光照射下较窄,这表明热电子更有效地转移到具有低LUMO能级的-AAB上。我们进一步通过操纵单个AuNRs中葫芦[8]脲(CB[8])与-AAB之间的超分子主客体相互作用,研究了CID的原位光可逆调节。此外,通过CB[8]内-AAB顺反形式的光子开关,实现了单个AuNRs中CID的实时原位可逆调节。与仅使用-AAB的情况不同,在可见光照射下LSPR线宽较窄,但在紫外光照射下逐渐变宽,在再次回到可见光照射时又变窄。这些结果可以归因于在水中完全封装在CB[8]内的-AAB在热力学上比-AAB更有利。因此,我们发现了一种通过在单个AuNRs中进行-AAB光异构化和调整入射光波长来调节CID的新策略。此外,本研究表明CID可以有效地应用于生物传感器的开发,以检测单个AuNRs中CB[8]腔内的客体分子及其结构变化。