Suppr超能文献

基于任务的神经网络评估:基于人类观察者信号检测评估欠采样MRI重建

Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.

作者信息

Herman Joshua D, Roca Rachel E, O'Neill Alexandra G, Wong Marcus L, Goud Lingala Sajan, Pineda Angel R

机构信息

Manhattan College, Department of Mathematics, The Bronx, New York, United States.

University of Iowa, Roy J. Carver Department of Biomedical Engineering, Iowa City, Iowa, United States.

出版信息

J Med Imaging (Bellingham). 2024 Jul;11(4):045503. doi: 10.1117/1.JMI.11.4.045503. Epub 2024 Aug 13.

Abstract

PURPOSE

Recent research explores using neural networks to reconstruct undersampled magnetic resonance imaging. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches to image quality. We compared conventional global quantitative metrics to evaluate image quality in undersampled images generated by a neural network with human observer performance in a detection task. The purpose is to study which acceleration (2×, 3×, 4×, 5×) would be chosen with the conventional metrics and compare it to the acceleration chosen by human observer performance.

APPROACH

We used common global metrics for evaluating image quality: the normalized root mean squared error (NRMSE) and structural similarity (SSIM). These metrics are compared with a measure of image quality that incorporates a subtle signal for a specific task to allow for image quality assessment that locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2×, 3×, 4×, and 5× one-dimensional undersampling rates. Cross-validation was performed for a 500- and a 4000-image training set with both SSIM and MSE losses. A two-alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000-image training set.

RESULTS

We found that for both loss functions, the human observer performance on the 2-AFC studies led to a choice of a 2× undersampling, but the SSIM and NRMSE led to a choice of a 3× undersampling.

CONCLUSIONS

For this detection task using a subtle small signal at the edge of detectability, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality between 2×, 3×, 4×, 5× undersampling rates when compared to the performance of human observers in the detection task.

摘要

目的

近期研究探索使用神经网络重建欠采样磁共振成像。由于重建图像中伪影的复杂性,需要开发基于任务的图像质量评估方法。我们将传统的全局定量指标与人类观察者在检测任务中的表现进行比较,以评估神经网络生成的欠采样图像的质量。目的是研究使用传统指标会选择哪种加速倍数(2倍、3倍、4倍、5倍),并将其与人类观察者表现所选择的加速倍数进行比较。

方法

我们使用常见的全局指标来评估图像质量:归一化均方根误差(NRMSE)和结构相似性(SSIM)。将这些指标与一种图像质量度量进行比较,该度量结合了特定任务的细微信号,以便进行局部评估欠采样对信号影响的图像质量评估。我们使用U-Net以2倍、3倍、4倍和5倍的一维欠采样率重建欠采样图像。对包含500张和4000张图像的训练集进行了交叉验证,同时使用了SSIM和均方误差(MSE)损失。针对从4000张图像训练集生成的图像进行了二选一强制选择(2-AFC)观察者研究,以检测细微信号(小模糊圆盘)。

结果

我们发现,对于两种损失函数,在2-AFC研究中人类观察者的表现导致选择2倍欠采样,但SSIM和NRMSE导致选择3倍欠采样。

结论

对于此在可检测性边缘使用细微小信号的检测任务,与检测任务中人类观察者的表现相比,在2倍、3倍、4倍、5倍欠采样率之间图像质量急剧下降之前,SSIM和NRMSE导致高估了使用U-Net可实现的欠采样。

相似文献

1
Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.
J Med Imaging (Bellingham). 2024 Jul;11(4):045503. doi: 10.1117/1.JMI.11.4.045503. Epub 2024 Aug 13.
5
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
6
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
7
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
8
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.

引用本文的文献

1
Ophthalmic Image Synthesis and Analysis with Generative Adversarial Network Artificial Intelligence.
J Imaging Inform Med. 2025 May 20. doi: 10.1007/s10278-025-01519-1.

本文引用的文献

3
Modeling human observer detection in undersampled magnetic resonance imaging reconstruction with total variation and wavelet sparsity regularization.
J Med Imaging (Bellingham). 2023 Jan;10(1):015502. doi: 10.1117/1.JMI.10.1.015502. Epub 2023 Feb 25.
4
Artifact- and content-specific quality assessment for MRI with image rulers.
Med Image Anal. 2022 Apr;77:102344. doi: 10.1016/j.media.2021.102344. Epub 2022 Jan 20.
5
Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus.
Neuroimage Clin. 2021;32:102896. doi: 10.1016/j.nicl.2021.102896. Epub 2021 Nov 23.
6
Impact of deep learning-based image super-resolution on binary signal detection.
J Med Imaging (Bellingham). 2021 Nov;8(6):065501. doi: 10.1117/1.JMI.8.6.065501. Epub 2021 Nov 16.
8
Optimizing constrained reconstruction in magnetic resonance imaging for signal detection.
Phys Med Biol. 2021 Jul 16;66(14). doi: 10.1088/1361-6560/ac1021.
10
Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI.
Magn Reson Med. 2021 Oct;86(4):1904-1916. doi: 10.1002/mrm.28834. Epub 2021 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验