Department of Mathematics, Manhattan College, Riverdale, NY 10471, United States of America.
Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, United States of America.
Phys Med Biol. 2021 Jul 16;66(14). doi: 10.1088/1361-6560/ac1021.
Constrained reconstruction in magnetic resonance imaging (MRI) allows the use of prior information through constraints to improve reconstructed images. These constraints often take the form of regularization terms in the objective function used for reconstruction. Constrained reconstruction leads to images which appear to have fewer artifacts than reconstructions without constraints but because the methods are typically nonlinear, the reconstructed images have artifacts whose structure is hard to predict. In this work, we compared different methods of optimizing the regularization parameter using a total variation (TV) constraint in the spatial domain and sparsity in the wavelet domain for one-dimensional (2.56×) undersampling using variable density undersampling. We compared the mean squared error (MSE), structural similarity (SSIM), L-curve and the area under the receiver operating characteristic (AUC) using a linear discriminant for detecting a small and a large signal. We used a signal-known-exactly task with varying backgrounds in a simulation where the anatomical variation was the major source of clutter for the detection task. Our results show that the AUC dependence on regularization parameters varies with the imaging task (i.e. the signal being detected). The choice of regularization parameters for MSE, SSIM, L-curve and AUC were similar. We also found that a model-based reconstruction including TV and wavelet sparsity did slightly better in terms of AUC than just enforcing data consistency but using these constraints resulted in much better MSE and SSIM. These results suggest that the increased performance in MSE and SSIM over-estimate the improvement in detection performance for the tasks in this paper. The MSE and SSIM metrics show a big difference in performance where the difference in AUC is small. To our knowledge, this is the first time that signal detection with varying backgrounds has been used to optimize constrained reconstruction in MRI.
磁共振成像(MRI)中的约束重建允许通过约束使用先验信息来改善重建图像。这些约束通常采用正则化项的形式,作为用于重建的目标函数的一部分。约束重建导致的图像看起来比没有约束的重建具有更少的伪影,但由于方法通常是非线性的,因此重建的图像具有难以预测结构的伪影。在这项工作中,我们比较了使用空间域中的总变差(TV)约束和小波域中的稀疏性对一维(2.56×)欠采样进行约束重建的不同方法,使用变密度欠采样。我们比较了均方误差(MSE)、结构相似性(SSIM)、L 曲线和接收者操作特征(AUC)曲线下面积(AUC),使用线性判别器检测小信号和大信号。我们使用模拟中的一个已知确切信号的任务和变化的背景,其中解剖变异是检测任务的主要杂波源。我们的结果表明,AUC 对正则化参数的依赖性随成像任务(即被检测的信号)而变化。用于 MSE、SSIM、L 曲线和 AUC 的正则化参数的选择相似。我们还发现,包括 TV 和小波稀疏性的基于模型的重建在 AUC 方面略优于仅强制数据一致性,但使用这些约束会导致更好的 MSE 和 SSIM。这些结果表明,在 MSE 和 SSIM 方面的性能提高高估了本文任务中检测性能的提高。MSE 和 SSIM 指标在性能上有很大的差异,而 AUC 的差异很小。据我们所知,这是首次使用具有变化背景的信号检测来优化 MRI 中的约束重建。