文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment.

作者信息

Tu Yuxuan, Gong Jianbao, Mou Jing, Jiang Hongfei, Zhao Haibo, Gao Jiake

机构信息

The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China.

Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China.

出版信息

Front Pharmacol. 2024 Jul 31;15:1434137. doi: 10.3389/fphar.2024.1434137. eCollection 2024.


DOI:10.3389/fphar.2024.1434137
PMID:39144632
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11322083/
Abstract

Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers , at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/c1fdc197c5ad/fphar-15-1434137-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/915542bd6028/fphar-15-1434137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/70b012a545f5/fphar-15-1434137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/94dca4d6400c/fphar-15-1434137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/c27a58367def/fphar-15-1434137-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/2988d90af9cd/fphar-15-1434137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/54c91f8fbb61/fphar-15-1434137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/a50de2b47b6d/fphar-15-1434137-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/2a965230469b/fphar-15-1434137-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/cbb43651038f/fphar-15-1434137-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/d09f6e615518/fphar-15-1434137-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/371294fddc9c/fphar-15-1434137-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/c1fdc197c5ad/fphar-15-1434137-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/915542bd6028/fphar-15-1434137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/70b012a545f5/fphar-15-1434137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/94dca4d6400c/fphar-15-1434137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/c27a58367def/fphar-15-1434137-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/2988d90af9cd/fphar-15-1434137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/54c91f8fbb61/fphar-15-1434137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/a50de2b47b6d/fphar-15-1434137-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/2a965230469b/fphar-15-1434137-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/cbb43651038f/fphar-15-1434137-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/d09f6e615518/fphar-15-1434137-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/371294fddc9c/fphar-15-1434137-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8927/11322083/c1fdc197c5ad/fphar-15-1434137-g012.jpg

相似文献

[1]
Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment.

Front Pharmacol. 2024-7-31

[2]
Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy.

ACS Nano. 2022-9-27

[3]
Prodrug strategies in anticancer chemotherapy.

ChemMedChem. 2008-1

[4]
Stimuli-responsive prodrugs with self-immolative linker for improved cancer therapy.

Eur J Med Chem. 2024-12-5

[5]
Stimuli-Responsive Prodrug Chemistries for Cancer Therapy.

Chembiochem. 2023-9-15

[6]
Stimulus-responsive self-assembled prodrugs in cancer therapy.

Chem Sci. 2022-3-18

[7]
Smart chemistry for traceless release of anticancer therapeutics.

Biomaterials. 2023-12

[8]
Designing Hydrogels for On-Demand Therapy.

Acc Chem Res. 2017-3-16

[9]
A nanomedicine composed of polymer-ss-DOX and polymer-Ce6 prodrugs with monoclonal antibody targeting effect for anti-tumor chemo-photodynamic synergetic therapy.

Acta Biomater. 2024-4-15

[10]
Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing.

Beilstein J Org Chem. 2018-2-19

引用本文的文献

[1]
Leveraging the Tumor Microenvironment as a Target for Cancer Therapeutics: A Review of Emerging Opportunities.

Pharmaceutics. 2025-7-29

[2]
Revisiting immune checkpoint inhibitors: new strategies to enhance efficacy and reduce toxicity.

Front Immunol. 2024-12-10

[3]
RGD-based self-assembling nanodrugs for improved tumor therapy.

Front Pharmacol. 2024-10-1

本文引用的文献

[1]
An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction.

Nat Commun. 2024-4-2

[2]
Radiotherapy activates picolinium prodrugs in tumours.

Nat Chem. 2024-8

[3]
Camptothecin-based prodrug nanomedicines for cancer therapy.

Nanoscale. 2023-11-16

[4]
Doxorubicin prodrug-based nanomedicines for the treatment of cancer.

Eur J Med Chem. 2023-10-5

[5]
Design and application of prodrug fluorescent probes for the detection of ovarian cancer cells and release of anticancer drug.

Biosens Bioelectron. 2023-9-15

[6]
Alkaline phosphatase (ALP) activatable small molecule-based prodrugs for cancer theranostics.

Org Biomol Chem. 2023-5-31

[7]
Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy.

Bioorg Chem. 2023-7

[8]
Taking phototherapeutics from concept to clinical launch.

Nat Rev Chem. 2021-11

[9]
Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.

Biomed Pharmacother. 2023-6

[10]
Recent advances in SN-38 drug delivery system.

Int J Pharm. 2023-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索