文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定一种用于骨肉瘤预后和免疫反应的新型细胞衰老相关长链非编码RNA特征

Identification of a novel cellular senescence-related lncRNA signature for prognosis and immune response in osteosarcoma.

作者信息

Wu Honglin, Deng Chuanbao, Zheng Xiaoqing, Huang Yongxiong, Chen Chong, Gu Honglin

机构信息

Department of Burn and Wound Repair, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Department of Radiological Diagnosis, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Transl Cancer Res. 2024 Jul 31;13(7):3742-3759. doi: 10.21037/tcr-24-163. Epub 2024 Jul 8.


DOI:10.21037/tcr-24-163
PMID:39145087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11319968/
Abstract

BACKGROUND: Cellular senescence, a novel hallmark of cancer, is associated with patient outcomes and tumor immunotherapy. However, at present, there is no systematic study on the use of cellular senescence-related long non-coding RNAs (CSR-lncRNAs) to predict survival in patients with osteosarcoma. In this study, we aimed to identify a CSR-lncRNAs signature and to evaluate its potential use as a survival prognostic marker and predictive tool for immune response of osteosarcoma. METHODS: We downloaded a cohort of patients with osteosarcoma from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We performed differential expression and co-expression analyses to identify CSR-lncRNAs. We performed univariate and multivariate Cox regression analyses along with the random forest algorithm to identify lncRNAs significantly correlated with senescence. Subsequently, we assessed the predictive models using survival curves, receiver operating characteristic curves, nomograms, C-index, and decision curve analysis. Based on this model, patients with osteosarcoma were divided into two groups according to their risk scores. Then, using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we compared their clinical characteristics to uncover functional differences. We further conducted immune infiltration analyses using estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE), cell-type identification by estimating relative subsets of rna transcripts (CIBERSORT), and single-sample gene set enrichment analysis for the two groups. We also evaluated the expression of the target genes of immune checkpoint inhibitors (ICIs). RESULTS: We identified six lncRNAs that were significantly correlated with senescence and accordingly established a novel cellular senescence-related lncRNA prognostic signature incorporating these lncRNAs. The nomogram indicated that the risk model was an independent prognostic factor that could predict the survival of patients with osteosarcoma. This model demonstrated high accuracy upon validation. Further analysis revealed that patients with osteosarcoma in the low-risk group exhibited better clinical outcomes and enhanced immune infiltration. CONCLUSIONS: The six-CSR-lncRNA prognostic signature effectively predicted survival outcomes and patients in the low-risk group might have improved immune infiltration.

摘要

背景:细胞衰老作为癌症的一个新特征,与患者预后及肿瘤免疫治疗相关。然而,目前尚无关于利用细胞衰老相关长链非编码RNA(CSR-lncRNAs)预测骨肉瘤患者生存情况的系统性研究。在本研究中,我们旨在鉴定一种CSR-lncRNAs特征,并评估其作为骨肉瘤生存预后标志物及免疫反应预测工具的潜在用途。 方法:我们从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)下载了一组骨肉瘤患者的数据。我们进行差异表达和共表达分析以鉴定CSR-lncRNAs。我们进行单因素和多因素Cox回归分析以及随机森林算法,以鉴定与衰老显著相关的lncRNAs。随后,我们使用生存曲线、受试者工作特征曲线、列线图、C指数和决策曲线分析来评估预测模型。基于该模型,根据风险评分将骨肉瘤患者分为两组。然后,通过基因本体论和京都基因与基因组百科全书分析,我们比较了它们的临床特征以揭示功能差异。我们进一步使用基于表达数据的恶性肿瘤组织基质和免疫细胞估计(ESTIMATE)、通过估计RNA转录本相对亚群进行细胞类型鉴定(CIBERSORT)以及对两组进行单样本基因集富集分析来进行免疫浸润分析。我们还评估了免疫检查点抑制剂(ICI)靶基因的表达。 结果:我们鉴定出六个与衰老显著相关的lncRNAs,并据此建立了一个包含这些lncRNAs的新型细胞衰老相关lncRNA预后特征。列线图表明风险模型是一个可预测骨肉瘤患者生存的独立预后因素。该模型在验证时显示出高准确性。进一步分析表明,低风险组的骨肉瘤患者表现出更好的临床结局和增强的免疫浸润。 结论:六-CSR-lncRNA预后特征有效地预测了生存结局,低风险组患者可能具有改善的免疫浸润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61e/11319968/1b40559c895a/tcr-13-07-3742-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61e/11319968/1ff91f8af108/tcr-13-07-3742-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61e/11319968/1b40559c895a/tcr-13-07-3742-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61e/11319968/1ff91f8af108/tcr-13-07-3742-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61e/11319968/1b40559c895a/tcr-13-07-3742-f6.jpg

相似文献

[1]
Identification of a novel cellular senescence-related lncRNA signature for prognosis and immune response in osteosarcoma.

Transl Cancer Res. 2024-7-31

[2]
Development of a Machine Learning-Based Autophagy-Related lncRNA Signature to Improve Prognosis Prediction in Osteosarcoma Patients.

Front Mol Biosci. 2021-5-21

[3]
A novel senescence-associated LncRNA signature predicts the prognosis and tumor microenvironment of patients with colorectal cancer: a bioinformatics analysis.

J Gastrointest Oncol. 2022-8

[4]
Anoikis-related lncRNA signature predicts prognosis and is associated with immune infiltration in hepatocellular carcinoma.

Anticancer Drugs. 2024-6-1

[5]
Construction of an Immune-Related Six-lncRNA Signature to Predict the Outcomes, Immune Cell Infiltration, and Immunotherapy Response in Patients With Hepatocellular Carcinoma.

Front Oncol. 2021-7-2

[6]
Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer.

Front Oncol. 2023-3-29

[7]
Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma.

Front Genet. 2022-10-13

[8]
Machine Learning-based Development and Validation of a Cell Senescence Predictive and Prognostic Signature in Intrahepatic Cholangiocarcinoma.

J Cancer. 2024-3-25

[9]
Identification and validation of a novel cellular senescence-related lncRNA prognostic signature for predicting immunotherapy response in stomach adenocarcinoma.

Front Genet. 2022-8-25

[10]
Identification and prognostic evaluation of differentially expressed long noncoding RNAs associated with immune infiltration in osteosarcoma.

Heliyon. 2024-2-28

引用本文的文献

[1]
Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies.

Pharmaceuticals (Basel). 2025-4-3

[2]
Analysis of cellular senescence-related genes in calcified aortic valve disease and the potential therapeutic role of β-Carotene.

PLoS One. 2025-3-10

本文引用的文献

[1]
Emerging roles of long non-coding RNAs in osteosarcoma.

Front Mol Biosci. 2024-3-7

[2]
Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress.

Pharmaceutics. 2024-2-8

[3]
Effects of senescence on the tumour microenvironment and response to therapy.

FEBS J. 2024-6

[4]
Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy.

Biomed Pharmacother. 2023-12

[5]
Identification of mC-related lncRNAs signature to predict prognosis and therapeutic responses in esophageal squamous cell carcinoma patients.

Sci Rep. 2023-9-4

[6]
Five cuprotosis-related lncRNA signatures for prognosis prediction in acute myeloid leukaemia.

Hematology. 2023-12

[7]
Comprehensive analysis of the role of immune-related PANoptosis lncRNA model in renal clear cell carcinoma based on RNA transcriptome and single-cell sequencing.

Oncol Res. 2023

[8]
Construction and validation of stemness-related lncRNA pair signature for predicting prognosis in colorectal cancer.

J Cancer Res Clin Oncol. 2023-10

[9]
Development of a Diagnostic Nomogram to Predict CAP in Hospitalized Patients with AECOPD.

COPD. 2023-12

[10]
Advances in Osteosarcoma.

Curr Osteoporos Rep. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索