Suppr超能文献

基于生成对抗网络的互联网行为异常预测

Anomaly prediction of Internet behavior based on generative adversarial networks.

作者信息

Wang XiuQing, An Yang, Hu Qianwei

机构信息

College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang, Hebei, China.

Hebei Provincial Key Laboratory of Network & Information Security, College of Computer and Cyber Security, Shijiazhuang, Hebei, China.

出版信息

PeerJ Comput Sci. 2024 Jul 23;10:e2009. doi: 10.7717/peerj-cs.2009. eCollection 2024.

Abstract

With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model-Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks' powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three-layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN.

摘要

随着互联网应用的普及,产生了大量的互联网行为日志数据。企业员工的异常行为可能导致网络安全问题和数据泄露事件。为确保信息系统的安全,研究互联网行为的异常预测具有重要意义。由于手动标注大数据成本高昂,因此提出了一种无监督生成模型——基于生成对抗网络的互联网行为异常预测模型(APIBGAN),该模型仅需少量标注数据即可对互联网行为异常进行预测。在通过所提方法对输入的互联网行为数据进行预处理后,APIBGAN中的数据生成生成对抗网络(DGGAN)利用神经网络从数据中强大的特征提取能力,学习真实互联网行为数据的分布,并用随机噪声生成互联网行为数据。APIBGAN利用这些标注的生成数据作为基准,完成基于距离的异常预测。采用企业员工的三类互联网行为采样数据对APIBGAN进行训练:(1)某部门单个员工的在线行为数据。(2)同一部门多个员工的在线行为数据。((3)不同部门多个员工的在线行为数据。这三类互联网行为数据的预测得分分别为87.23%、85.13%和83.47%,均高于CCF大数据与计算智能竞赛(CCF-BDCI)中基于孤立森林的比较方法所获得的最高得分81.35%。实验结果验证了APIBGAN通过由简单的三层全连接神经网络(FNN)组成的GAN有效地预测了互联网行为的异常值。我们不仅可以将APIBGAN用于互联网行为的异常预测,还可以将其用于许多其他具有难以手动标注的大数据的应用中的异常预测。最重要的是,APIBGAN在异常预测方面具有广阔的应用前景,我们的工作也为基于GAN的异常预测提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e63/11323085/fabebbe8f960/peerj-cs-10-2009-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验