Suppr超能文献

通过在Transformer框架中纳入门控循环单元(GRU)来预测布尔公式的可满足性。

Predicting the satisfiability of Boolean formulas by incorporating gated recurrent unit (GRU) in the Transformer framework.

作者信息

Chang Wenjing, Guo Mengyu, Luo Junwei

机构信息

School of Software, Henan Polytechnic University, Jiaozuo, Henan, China.

出版信息

PeerJ Comput Sci. 2024 Aug 8;10:e2169. doi: 10.7717/peerj-cs.2169. eCollection 2024.

Abstract

The Boolean satisfiability (SAT) problem exhibits different structural features in various domains. Neural network models can be used as more generalized algorithms that can be learned to solve specific problems based on different domain data than traditional rule-based approaches. How to accurately identify these structural features is crucial for neural networks to solve the SAT problem. Currently, learning-based SAT solvers, whether they are end-to-end models or enhancements to traditional heuristic algorithms, have achieved significant progress. In this article, we propose TG-SAT, an end-to-end framework based on Transformer and gated recurrent neural network (GRU) for predicting the satisfiability of SAT problems. TG-SAT can learn the structural features of SAT problems in a weakly supervised environment. To capture the structural information of the SAT problem, we encodes a SAT problem as an undirected graph and integrates GRU into the Transformer structure to update the node embeddings. By computing cross-attention scores between literals and clauses, a weighted representation of nodes is obtained. The model is eventually trained as a classifier to predict the satisfiability of the SAT problem. Experimental results demonstrate that TG-SAT achieves a 2%-5% improvement in accuracy on random 3-SAT problems compared to NeuroSAT. It also outperforms in SR(N), especially in handling more complex SAT problems, where our model achieves higher prediction accuracy.

摘要

布尔可满足性(SAT)问题在不同领域呈现出不同的结构特征。与传统的基于规则的方法相比,神经网络模型可以用作更通用的算法,能够基于不同领域的数据进行学习以解决特定问题。如何准确识别这些结构特征对于神经网络解决SAT问题至关重要。目前,基于学习的SAT求解器,无论是端到端模型还是对传统启发式算法的改进,都取得了显著进展。在本文中,我们提出了TG-SAT,这是一种基于Transformer和门控循环神经网络(GRU)的端到端框架,用于预测SAT问题的可满足性。TG-SAT可以在弱监督环境中学习SAT问题的结构特征。为了捕捉SAT问题的结构信息,我们将SAT问题编码为无向图,并将GRU集成到Transformer结构中以更新节点嵌入。通过计算文字和子句之间的交叉注意力分数,获得节点的加权表示。该模型最终被训练为分类器以预测SAT问题的可满足性。实验结果表明,与NeuroSAT相比,TG-SAT在随机3-SAT问题上的准确率提高了2%-5%。它在SR(N)中也表现出色,特别是在处理更复杂的SAT问题时,我们的模型实现了更高的预测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a11/11323027/64733a642c9a/peerj-cs-10-2169-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验