Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic.
Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
Protein Sci. 2024 Sep;33(9):e5103. doi: 10.1002/pro.5103.
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
自 SARS-CoV-2 出现以来,该病毒的 RNA 依赖性 RNA 聚合酶(RdRp)所有亚基的突变都被反复报道。尽管 RdRp 是抗病毒药物的主要靶标,但探索这些突变表型效应的实验研究却很有限。本研究重点关注根据发生率和潜在影响选择的三个 RdRp 亚基(nsp7、nsp8 和 nsp12)中的取代的表型效应。我们采用纳米差示扫描荧光法和微尺度热泳法来研究这些突变对蛋白稳定性和 RdRp 复合物组装的影响。我们观察到了不同的影响;值得注意的是,nsp8 中的单个突变显著增加了其稳定性,其熔点升高了 13°C,而 nsp7 和 nsp8 中的某些突变在 RdRp 复合物形成过程中降低了与 nsp12 的结合亲和力。我们使用荧光酶促测定法评估了对 RNA 聚合酶活性的整体影响。我们发现,大多数检查的突变改变了聚合酶活性,通常是由于稳定性或与 RdRp 复合物其他成分的亲和力的变化直接导致的。有趣的是,nsp8 A21V 和 nsp12 P323L 突变的组合导致聚合酶活性增加了 50%。据我们所知,这是首次在生化水平上证明构成 RdRp 复合物的所有成分的氨基酸突变对新兴 SARS-CoV-2 亚变种的影响。