Davenport Audrey M, Marshall Checkers R, Nishiguchi Taichi, Kadota Kentaro, Andreeva Anastasia B, Horike Satoshi, Brozek Carl K
Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States.
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
J Am Chem Soc. 2024 Aug 28;146(34):23692-23698. doi: 10.1021/jacs.4c08883. Epub 2024 Aug 15.
Size reduction offers a synthetic route to tunable phase change behavior. Preparing materials as nanoparticles causes drastic modulations to critical temperatures (), hysteresis widths, and the "sharpness" of first-order versus second-order phase transitions. A microscopic picture of the chemistry underlying this size dependence in phenomena ranging from melting to superconductivity remains debated. As a case study with broad implications, we report that size-dependent spin crossover (SCO) in nanocrystals of the metal-organic framework (MOF) Fe(1,2,3-triazolate) arises from metal-linker bonds becoming more labile in smaller particles. In comparison to the bulk material, differential scanning calorimetry indicates a ∼ 30-40% reduction in and Δ in the smallest particles. Variable-temperature vibrational spectroscopy reveals a diminished long-range structural cooperativity, while X-ray diffraction evidence an over 3-fold increase in the thermal expansion coefficients. This "phonon softening" provides a molecular mechanism for designing size-dependent behavior in framework materials and for understanding phase changes in general.
尺寸减小为可调谐相变行为提供了一条合成途径。将材料制备成纳米颗粒会对临界温度、滞后宽度以及一级与二级相变的“尖锐度”产生剧烈调制。从熔化到超导等现象中,这种尺寸依赖性背后的化学微观图景仍存在争议。作为一个具有广泛影响的案例研究,我们报告金属有机框架(MOF)Fe(1,2,3 - 三唑)纳米晶体中尺寸依赖性自旋交叉(SCO)源于较小颗粒中金属 - 连接体键变得更不稳定。与块状材料相比,差示扫描量热法表明最小颗粒中的临界温度和温度滞后变化降低了约30 - 40%。变温振动光谱揭示了长程结构协同性减弱,而X射线衍射表明热膨胀系数增加了3倍以上。这种“声子软化”为设计框架材料中尺寸依赖性行为以及总体上理解相变提供了一种分子机制。