Suppr超能文献

用于金属MAZ材料中电荷密度波设计的插层结构

Intercalating Architecture for the Design of Charge Density Wave in Metallic MAZ Materials.

作者信息

Wang Lei, Wang ShuaiYu, Niu Yuekun, Liu Xiuying, Wu Yapeng, Zhang Bing, Liu Zhifeng, Li Xiao-Ping, Chen Xing-Qiu

机构信息

School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.

Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.

出版信息

Nano Lett. 2024 Sep 11;24(36):11279-11285. doi: 10.1021/acs.nanolett.4c02998. Epub 2024 Aug 15.

Abstract

We present a novel approach to induce charge density waves (CDWs) in metallic MAZ materials, resembling the behavior observed in transition metal dichalcogenides (TMDCs). This method leverages the intercalating architecture to maintain the same crystal field and Fermi surface topologies. Our investigation reveals that CDW instability in these materials arises from electron-phonon coupling (EPC) between the band and longitudinal acoustic (LA) phonons, mirroring TMDC's behavior. By combining α-MAZ with 1-MX materials in a predictive CDW phase diagram using critical EPC constants, we demonstrate the feasibility of extending CDW across material families with comparable crystal fields and reveal the crucial role in CDW instability of the competition between ionic charge transfer and electron correlation. We further uncover a strain-induced Mott transition in β-NbGeN monolayer featuring star-of-David patterns. This work highlights the potential of intercalating architecture to engineer CDW materials, expanding our understanding of CDW instability and correlation physics.

摘要

我们提出了一种在金属MAZ材料中诱导电荷密度波(CDW)的新方法,类似于在过渡金属二硫属化物(TMDC)中观察到的行为。该方法利用插层结构来保持相同的晶体场和费米面拓扑结构。我们的研究表明,这些材料中的CDW不稳定性源于能带与纵向声学(LA)声子之间的电子-声子耦合(EPC),这与TMDC的行为相似。通过使用临界EPC常数在预测的CDW相图中将α-MAZ与1-MX材料相结合,我们证明了在具有可比晶体场的材料家族中扩展CDW的可行性,并揭示了离子电荷转移与电子关联之间的竞争在CDW不稳定性中的关键作用。我们进一步发现了具有大卫之星图案的β-NbGeN单层中的应变诱导莫特转变。这项工作突出了插层结构在设计CDW材料方面的潜力,扩展了我们对CDW不稳定性和关联物理的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验