Dakave Siddhi, Bhinge Guruprasad, Kanamadi Chidanand
Magnetic and Multifunctional Materials Research Division, Department of Physics, Devchand College, Arjunnagar, 591 237, Maharashtra, India.
Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603203.
Environ Sci Pollut Res Int. 2024 Aug 15. doi: 10.1007/s11356-024-34682-z.
This study investigates the synthesis and electrocatalytic performance of cobalt oxide (CoO) nanoparticles for the oxygen evolution reaction (OER) and their role in water treatment as contaminant removal agents. Cobalt oxide nanoparticles are recognized as promising materials in electrocatalysis due to their tunable properties and nanoscale engineering potential. Here, fine cobalt oxide nanoparticles are synthesized using the sol-gel method followed by various sintering temperatures to achieve precise control over surface morphology, size, and shape. Characterization via high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM) elucidates the impact of sintering temperature on nanoparticle properties. Thin film electrodes of cobalt oxide are fabricated using the doctor blade method and evaluated using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Among the tested sintering temperatures, cobalt oxide electrodes sintered at 600 °C exhibit superior catalytic activity, demonstrating an overpotential of 258 mV (vs RHE) at 10 mA cm current density and a Tafel slope of 17.33 mV dec. Furthermore, these electrodes demonstrate excellent stability, maintaining OER performance for 10 h in 1 M NaOH electrolyte. Additionally, the role of cobalt oxide nanoparticles in water treatment is explored using inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental results reveal that lower sintering temperatures enhance the electrocatalytic properties of cobalt oxide nanoparticles, highlighting their potential contribution to sustainable energy and water treatment technologies. This work underscores the significance of cobalt oxide nanoparticles as dual-functional materials for advancing electrocatalysis and water purification applications, thus paving the way for the development of efficient and environmentally friendly technologies.
本研究调查了用于析氧反应(OER)的氧化钴(CoO)纳米颗粒的合成及其电催化性能,以及它们作为污染物去除剂在水处理中的作用。氧化钴纳米颗粒因其可调谐性能和纳米尺度工程潜力而被认为是电催化领域中有前景的材料。在此,采用溶胶-凝胶法合成精细的氧化钴纳米颗粒,随后在不同烧结温度下处理,以实现对表面形态、尺寸和形状的精确控制。通过高分辨率扫描电子显微镜(HRSEM)和高分辨率透射电子显微镜(HRTEM)进行表征,阐明了烧结温度对纳米颗粒性能的影响。使用刮刀法制备氧化钴薄膜电极,并采用线性扫描伏安法(LSV)和电化学阻抗谱(EIS)进行评估。在测试的烧结温度中,600°C烧结的氧化钴电极表现出优异的催化活性,在10 mA cm电流密度下的过电位为258 mV(相对于可逆氢电极),塔菲尔斜率为17.33 mV dec。此外,这些电极表现出出色的稳定性,在1 M NaOH电解液中10小时内保持OER性能。此外,使用电感耦合等离子体原子发射光谱法(ICP-AES)探索了氧化钴纳米颗粒在水处理中的作用。实验结果表明,较低的烧结温度增强了氧化钴纳米颗粒的电催化性能,突出了它们对可持续能源和水处理技术的潜在贡献。这项工作强调了氧化钴纳米颗粒作为推进电催化和水净化应用的双功能材料的重要性,从而为高效和环境友好技术的发展铺平了道路。