Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany.
Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2400912121. doi: 10.1073/pnas.2400912121. Epub 2024 Aug 15.
Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD-dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus . By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.
肌醇-1-磷酸合酶(MIPS)催化葡萄糖-6-磷酸(G6P)在 NAD 依赖性下异构化为肌醇-1-磷酸(IMP),控制肌醇途径的限速步骤。先前的结构研究主要集中在详细的分子机制上,忽略了驱动这个 240 kDa 同源四聚体复合物功能的大规模构象变化。在这项研究中,我们从嗜热真菌中鉴定出了活性的内源性 MIPS。通过解析 2.48 Å 的天然结构(FSC = 0.143),我们揭示了一个完全填充的活性位点。利用 3D 变异性分析,我们发现了 MIPS 的构象状态,使我们能够直接观察到其催化中心的有序到无序的转变。G6P 的非循环中间体占据了三个构象状态中的两个活性位点,表明催化机制中高能中间体的静电稳定化起着关键作用。对所有具有已知结构的异构酶的检查显示,其活性位点内的二级结构也存在类似的波动。基于这些发现,我们建立了一个构象选择模型,该模型控制着底物的结合,并最终影响肌醇的可用性。特别是,MIPS 的基态表现出结构构象,无论是否结合底物,这种模式在各种异构酶中都存在。这些发现有助于理解 MIPS 基于结构的功能,为未来针对调节和潜在治疗应用的研究提供模板。