Suppr超能文献

PSDF:用于多视图重建的先验驱动神经隐式曲面学习

PSDF: Prior-Driven Neural Implicit Surface Learning for Multi-View Reconstruction.

作者信息

Su Wanjuan, Zhang Chen, Xu Qingshan, Tao Wenbing

出版信息

IEEE Trans Vis Comput Graph. 2025 Sep;31(9):5229-5244. doi: 10.1109/TVCG.2024.3444035.

Abstract

Surface reconstruction has traditionally relied on the Multi-View Stereo (MVS)-based pipeline, which often suffers from noisy and incomplete geometry. This is due to that although MVS has been proven to be an effective way to recover the geometry of the scenes, especially for locally detailed areas with rich textures, it struggles to deal with areas with low texture and large variations of illumination where the photometric consistency is unreliable. Recently, Neural Implicit Surface Reconstruction (NISR) combines surface rendering and volume rendering techniques and bypasses the MVS as an intermediate step, which has emerged as a promising alternative to overcome the limitations of traditional pipelines. While NISR has shown impressive results on simple scenes, it remains challenging to recover delicate geometry from uncontrolled real-world scenes which is caused by its underconstrained optimization. To this end, the framework PSDF is proposed which resorts to external geometric priors from a pretrained MVS network and internal geometric priors inherent in the NISR model to facilitate high-quality neural implicit surface learning. Specifically, the visibility-aware feature consistency loss and depth prior-assisted sampling based on external geometric priors are introduced. These proposals provide powerfully geometric consistency constraints and aid in locating surface intersection points, thereby significantly improving the accuracy and delicate reconstruction of NISR. Meanwhile, the internal prior-guided importance rendering is presented to enhance the fidelity of the reconstructed surface mesh by mitigating the biased rendering issue in NISR. Extensive experiments on Tanks and Temples datasets show that PSDF achieves state-of-the-art performance on complex uncontrolled scenes.

摘要

传统上,表面重建依赖于基于多视图立体(MVS)的流程,该流程常常存在几何形状噪声大且不完整的问题。这是因为尽管MVS已被证明是恢复场景几何形状的有效方法,特别是对于具有丰富纹理的局部细节区域,但它难以处理纹理低且光照变化大的区域,在这些区域中光度一致性不可靠。最近,神经隐式表面重建(NISR)结合了表面渲染和体渲染技术,并绕过MVS作为中间步骤,已成为克服传统流程局限性的有前途的替代方法。虽然NISR在简单场景中已显示出令人印象深刻的结果,但从不受控制的真实世界场景中恢复精细的几何形状仍然具有挑战性,这是由其欠约束优化导致的。为此,提出了PSDF框架,该框架借助预训练MVS网络的外部几何先验和NISR模型中固有的内部几何先验来促进高质量的神经隐式表面学习。具体而言,引入了基于外部几何先验的可见性感知特征一致性损失和深度先验辅助采样。这些提议提供了强大的几何一致性约束,并有助于定位表面交点,从而显著提高NISR的准确性和精细重建。同时,提出了内部先验引导的重要性渲染,以通过减轻NISR中的偏差渲染问题来提高重建表面网格的保真度。在Tanks and Temples数据集上进行的大量实验表明,PSDF在复杂的不受控制的场景中实现了领先的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验