Xu Jian, Du Shian, Yang Junmei, Ma Qianli, Zeng Delu
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6723-6737. doi: 10.1109/TNNLS.2024.3406635. Epub 2025 Apr 4.
Deep Gaussian process (DGP) models offer a powerful nonparametric approach for Bayesian inference, but exact inference is typically intractable, motivating the use of various approximations. However, existing approaches, such as mean-field Gaussian assumptions, limit the expressiveness and efficacy of DGP models, while stochastic approximation can be computationally expensive. To tackle these challenges, we introduce neural operator variational inference (NOVI) for DGPs. NOVI uses a neural generator to obtain a sampler and minimizes the regularized Stein discrepancy (RSD) between the generated distribution and true posterior in $\mathcal {L}_{2}$ space. We solve the minimax problem using Monte Carlo estimation and subsampling stochastic optimization techniques and demonstrate that the bias introduced by our method can be controlled by multiplying the Fisher divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm. Our experiments on datasets ranging from hundreds to millions demonstrate the effectiveness and the faster convergence rate of the proposed method. We achieve a classification accuracy of 93.56 on the CIFAR10 dataset, outperforming state-of-the-art (SOTA) Gaussian process (GP) methods. We are optimistic that NOVI possesses the potential to enhance the performance of deep Bayesian nonparametric models and could have significant implications for various practical applications.
深度高斯过程(DGP)模型为贝叶斯推理提供了一种强大的非参数方法,但精确推理通常难以处理,这促使人们使用各种近似方法。然而,现有的方法,如意向场高斯假设,限制了DGP模型的表现力和有效性,而随机近似在计算上可能很昂贵。为了应对这些挑战,我们为深度高斯过程引入了神经算子变分推理(NOVI)。NOVI使用神经生成器来获得一个采样器,并在$\mathcal {L}_{2}$空间中最小化生成分布与真实后验之间的正则化斯坦因差异(RSD)。我们使用蒙特卡罗估计和子采样随机优化技术来解决极小极大问题,并证明我们的方法引入的偏差可以通过将费舍尔散度乘以一个常数来控制,这导致了稳健的误差控制,并确保了算法的稳定性和精度。我们在从数百到数百万的数据集上进行的实验证明了所提出方法(NOVI)的有效性和更快的收敛速度。我们在CIFAR10数据集上达到了93.56的分类准确率,优于当前最优的(SOTA)高斯过程(GP)方法。我们乐观地认为,神经算子变分推理(NOVI)有潜力提高深度贝叶斯非参数模型的性能,并可能对各种实际应用产生重大影响。