Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China.
Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China.
Ecotoxicol Environ Saf. 2024 Oct 1;284:116890. doi: 10.1016/j.ecoenv.2024.116890. Epub 2024 Aug 14.
Perfluorooctane sulfonate (PFOS) is known as a persistent organic pollutant. A significant correlation between PFOS and liver ferroptosis has been unveiled, but the precise mechanism needs to be elucidated. In prior research, we found that PFOS treatment provoked mitochondrial iron overload. In this study, we observed a gradual increase in lysosomal iron in L-O2 cells after exposure to PFOS for 0.5-24 h. In PFOS-exposed L-O2 cells, suppressing autophagy relieved the lysosomal iron overload. Inhibiting transient receptor potential mucolipin 1 (TRPML1), a calcium efflux channel on the lysosomal membrane, led to a further rise in lysosomal iron levels and decreased mitochondrial iron overload during PFOS treatment. Suppressing VDAC1, a subtype of voltage-dependent anion-selective channels (VDACs) on the outer mitochondrial membrane, had no impact on PFOS-triggered mitochondrial iron overload, whereas restraining VDAC2/3 relieved this condition. Although silencing VDAC2 relieved PFOS-induced mitochondrial iron overload, it had no effect on PFOS-triggered lysosomal iron overload. Silencing VDAC3 alleviated PFOS-mediated mitochondrial iron overload and led to an additional increase in lysosomal iron. Therefore, we regarded VDAC3 as the specific VDACs subtype that mediated the lysosomes-mitochondria iron transfer. Additionally, in the presence of PFOS, an enhanced association between TRPML1 and VDAC3 was found in mice liver tissue and L-O2 cells. Our research unveils a novel regulatory mechanism of autophagy on the iron homeostasis and the effect of TRPML1-VDAC3 interaction on lysosomes-mitochondria iron transfer, giving an explanation of PFOS-induced ferroptosis and shedding some light on the role of classic calcium channels in iron transmission.
全氟辛烷磺酸 (PFOS) 是一种持久性有机污染物。已经揭示 PFOS 与肝脏铁死亡之间存在显著相关性,但确切的机制仍需阐明。在之前的研究中,我们发现 PFOS 处理会引发线粒体铁超载。在这项研究中,我们观察到 L-O2 细胞在暴露于 PFOS 0.5-24 小时后,溶酶体铁逐渐增加。在 PFOS 暴露的 L-O2 细胞中,抑制自噬可缓解溶酶体铁超载。抑制溶酶体膜上的钙外排通道瞬时受体电位 mucolipin 1 (TRPML1) 可导致溶酶体铁水平进一步升高,并在 PFOS 处理时减少线粒体铁超载。抑制线粒体外膜上的电压依赖性阴离子选择通道 (VDACs) 的亚型 VDAC1 对 PFOS 触发的线粒体铁超载没有影响,而抑制 VDAC2/3 可缓解这种情况。尽管沉默 VDAC2 可缓解 PFOS 诱导的线粒体铁超载,但对 PFOS 触发的溶酶体铁超载没有影响。沉默 VDAC3 可缓解 PFOS 介导的线粒体铁超载,并导致溶酶体铁进一步增加。因此,我们认为 VDAC3 是介导溶酶体-线粒体铁转移的特定 VDACs 亚型。此外,在 PFOS 存在的情况下,我们在小鼠肝组织和 L-O2 细胞中发现 TRPML1 和 VDAC3 之间的相互作用增强。我们的研究揭示了自噬对铁稳态的新的调节机制,以及 TRPML1-VDAC3 相互作用对溶酶体-线粒体铁转移的影响,解释了 PFOS 诱导的铁死亡,并阐明了经典钙通道在铁传递中的作用。