Suppr超能文献

静动态交互作用于多领域认知障碍脑卒中患者三重网络模型中。

Static and dynamic interactions within the triple-network model in stroke patients with multidomain cognitive impairments.

机构信息

Department of MRI, Henan Key Laboratory of Magnetic Resonance Function and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Cardiff University Brain Research Imaging Centre, United Kingdom.

出版信息

Neuroimage Clin. 2024;43:103655. doi: 10.1016/j.nicl.2024.103655. Epub 2024 Aug 10.

Abstract

BACKGROUND

Internal capsule strokes often result in multidomain cognitive impairments across memory, attention, and executive function, typically due to disruptions in brain network connectivity. Our study examines these impairments by analyzing interactions within the triple-network model, focusing on both static and dynamic aspects.

METHODS

We collected resting-state fMRI data from 62 left (CI_L) and 56 right (CI_R) internal capsule stroke patients, along with 57 healthy controls (HC). Using independent component analysis to extract the default mode (DMN), executive control (ECN), and salience networks (SAN), we conducted static and dynamic functional network connectivity analyses (DFNC) to identify differences between stroke patients and controls. For DFNC, we used k-means clustering to focus on temporal properties and multilayer network analysis to examine integration and modularity Q, where integration represents dynamic interactions between networks, and modularity Q measures how well the network is divided into distinct modules. We then calculated the correlations between SFNC/DFNC properties with significant inter-group differences and cognitive scales.

RESULTS

Compared to HC, both CI_L and CI_R patients showed increased static FCs between SAN and DMN and decreased dynamic interactions between ECN and other networks. CI_R patients also had heightened static FCs between SAN and ECN and maintained a state with strongly positive FNCs across all networks in the triple-network model. Additionally, CI_R patients displayed decreased modularity Q.

CONCLUSION

These findings highlight that stroke can result in the disruption of static and dynamic interactions in the triple network model, aiding our understanding of the neuropathological basis for multidomain cognitive deficits after internal capsule stroke.

摘要

背景

内囊卒中常导致记忆、注意力和执行功能等多领域认知障碍,这通常归因于脑网络连接的中断。本研究通过分析三重网络模型内的相互作用来研究这些损伤,重点关注静态和动态方面。

方法

我们从 62 名左侧(CI_L)和 56 名右侧(CI_R)内囊卒中患者以及 57 名健康对照者(HC)中收集了静息态 fMRI 数据。使用独立成分分析提取默认模式网络(DMN)、执行控制网络(ECN)和突显网络(SAN),我们进行了静态和动态功能网络连接分析(DFNC),以识别卒中患者与对照组之间的差异。对于 DFNC,我们使用 K-均值聚类来关注时间特性,以及多层网络分析来研究整合和模块性 Q,其中整合代表网络之间的动态相互作用,而模块性 Q 衡量网络分为不同模块的程度。然后,我们计算了具有显著组间差异的 SFNC/DFNC 属性与认知量表之间的相关性。

结果

与 HC 相比,CI_L 和 CI_R 患者的 SAN 与 DMN 之间的静态 FC 增加,而 ECN 与其他网络之间的动态相互作用减少。CI_R 患者的 SAN 与 ECN 之间的静态 FC 也增加,并且在三重网络模型中的所有网络中保持强烈正 FNC 的状态。此外,CI_R 患者的模块性 Q 降低。

结论

这些发现强调了卒中可能导致三重网络模型中静态和动态相互作用的中断,有助于我们理解内囊卒中后多领域认知缺陷的神经病理学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6332/11367478/f0e16c11b3b5/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验