Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
Department of Civil & Environmental Engineering, 323 Martin Luther King Blvd, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
Chemosphere. 2024 Sep;364:143057. doi: 10.1016/j.chemosphere.2024.143057. Epub 2024 Aug 14.
We hereby report the development of a novel electrochemical method to degrade perfluorooctanoic acid (CFCOOH, PFOA). At the center of the approach are bimetallic Pd-Ru nano-catalyst materials called IMPACT: Innovative (nano)Materials and Processes for Advanced Catalytic Technologies. IMPACT uses flavonoid-sequestered Pd-Ru, allowing the development of specialized electrodes with tunable properties to sequentially degrade PFOA in wastewater samples into a sustainable byproduct via an indirect electrochemical method. Electron transfers at RuOH species stabilize the Pd component of the nano-catalysts, enabling the degradation process via PFOA deprotonation, chain shortening, decarboxylation, hydrolysis, fluoride elimination, and CF flake-off mechanism. IMPACT enabled the observation of redox peaks at -0.26 V and 0.56 V for the first time, with accompanying reduction peaks at -0.5V and 0.29 V, respectively. These redox peaks, which correlated with the concentrations of PFOA (20, 50, 100, 200, and 400. mg L), were verified and confirmed using electrochemical simulations. Control experiments did not show degradation of PFOA in the absence of Pd-Ru nano-catalyst. The degradation in wastewater was obtained within 3 h with an efficiency of 98.5%. The electrochemical degradation products of PFOA were identified using High-resolution desalting paper spray mass spectrometry (DPS-MS) and collision-induced dissociation (CID) analysis. The results yielded CFCOOH, CFCOOH, and CFOH with dissociation losses of CFO or CO. IMPACT introduces a novel nano-catalyst with high efficiency and a reliable capability that defluorinates strong C-F bonds that are components of recalcitrant organics in myriad environmental matrices.
我们在此报告了一种新型电化学方法降解全氟辛酸(CFCOOH,PFOA)的开发。该方法的核心是一种名为 IMPACT 的双金属 Pd-Ru 纳米催化剂材料:创新(纳米)材料和先进催化技术的工艺。IMPACT 利用黄酮类物质螯合的 Pd-Ru,开发出具有可调特性的专用电极,通过间接电化学方法将废水中的 PFOA 依次降解为可持续的副产物。RuOH 物种的电子转移稳定了纳米催化剂中的 Pd 成分,通过 PFOA 去质子化、链缩短、脱羧、水解、氟消除和 CF 剥落机制实现降解过程。IMPACT 首次实现了-0.26 V 和 0.56 V 的氧化还原峰的观察,同时伴随着-0.5 V 和 0.29 V 的还原峰,这些氧化还原峰与 PFOA 的浓度(20、50、100、200 和 400. mg L)相关,使用电化学模拟进行了验证和确认。控制实验表明,在没有 Pd-Ru 纳米催化剂的情况下,PFOA 不会降解。在废水处理中,3 小时内即可达到 98.5%的降解效率。使用高分辨率脱盐纸喷雾质谱(DPS-MS)和碰撞诱导解离(CID)分析鉴定了 PFOA 的电化学降解产物。结果得到 CFCOOH、CFCOOH 和 CFOH,具有 CFO 或 CO 的解离损失。IMPACT 引入了一种新型纳米催化剂,具有高效和可靠的脱氟能力,能够分解强 C-F 键,这些键是众多环境基质中难降解有机物的组成部分。