Zhan Zhengsheng, Lai Dangyue, Huang Canjian, Zhang Zhixiang, Deng Yongle, Yang Jian
School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.
Sensors (Basel). 2025 Apr 25;25(9):2730. doi: 10.3390/s25092730.
To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight-Metropolis hybrid exploration mechanisms, simulated annealing-particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21-35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems.
为提高沙猫群优化(SCSO)算法在复杂三维环境中进行无人机路径规划的全局搜索效率和动态适应性,本研究提出了一种改进的沙猫群优化(MSCSO)算法,该算法集成了混沌映射初始化、莱维飞行 - metropolis混合探索机制、模拟退火 - 粒子群混合开发策略和精英变异技术。这些策略不仅在确保算法精度的同时显著提高了收敛速度,还为提升SCSO的性能提供了有效途径。我们成功地将这些改进应用于复杂环境下的无人机路径规划场景。在18个基准函数上的实验结果证明了MSCSO增强的收敛速度和稳定性。所提出的方法在多模态优化任务中具有卓越性能。通过将MSCSO与三种先进算法进行比较,在从真实世界地形数据导出的八个复杂场景中,MSCSO的性能表现为生成更短的平均路径长度,将碰撞风险降低21 - 35%,并实现更高的计算效率。其在障碍物密集和多航点环境中的鲁棒性证实了其在工程背景下的实用性。总体而言,MSCSO在低空资源勘探和应急救援行动中展现出巨大潜力。这些创新策略为智能无人系统中的自主决策提供了理论和技术基础。