Suppr超能文献

基于只读存储器的连续制造过程随机优化

ROM-based stochastic optimization for a continuous manufacturing process.

作者信息

Cruz-Oliver Raul, Monzon Luis, Ramirez-Laboreo Edgar, Rodriguez-Fortun Jose-Manuel

机构信息

ETH Zurich, Zurich, 8092, Switzerland.

ROMEM Research Group, Instituto Tecnologico de Aragon (ITA), Zaragoza, 50018, Spain.

出版信息

ISA Trans. 2024 Nov;154:242-249. doi: 10.1016/j.isatra.2024.08.010. Epub 2024 Aug 10.

Abstract

This paper proposes a model-based optimization method for the production of automotive seals in an extrusion process. The high production throughput, coupled with quality constraints and the inherent uncertainty of the process, encourages the search for operating conditions that minimize nonconformities. The main uncertainties arise from the process variability and from the raw material itself. The proposed method, which is based on Bayesian optimization, takes these factors into account and obtains a robust set of process parameters. Due to the high computational cost and complexity of performing detailed simulations, a reduced order model is used to address the optimization. The proposal has been evaluated in a virtual environment, where it has been verified that it is able to minimize the impact of process uncertainties. In particular, it would significantly improve the quality of the product without incurring additional costs, achieving a 50% tighter dimensional tolerance compared to a solution obtained by a deterministic optimization algorithm.

摘要

本文提出了一种基于模型的汽车密封件挤出生产过程优化方法。高生产吞吐量,加上质量约束和过程中固有的不确定性,促使人们寻找使不合格品最少的操作条件。主要的不确定性来自于过程的可变性和原材料本身。所提出的基于贝叶斯优化的方法考虑了这些因素,并获得了一组稳健的过程参数。由于进行详细模拟的计算成本高且复杂,因此使用降阶模型来进行优化。该方案已在虚拟环境中进行了评估,在该环境中已验证它能够最小化过程不确定性的影响。特别是,它将显著提高产品质量而不会产生额外成本,与确定性优化算法得到的解决方案相比,实现了50%更严格的尺寸公差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验