Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA.
Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
Sci Rep. 2024 Aug 15;14(1):18934. doi: 10.1038/s41598-024-68397-5.
The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis patient colonic biopsies, we identified architectural complexities and associated difficult-to-detect rare cell types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.
空间组学在利用正常和疾病状态下细胞相互作用进行精准医学方面具有重要意义,但目前缺乏将疾病状态与空间异质性指导的细胞注释相匹配的策略。在这里,我们使用了一种空间上下文相关的方法,将空间模式检测与细胞注释相匹配。在溃疡性结肠炎患者结肠活检的现有数据集上使用这种方法,我们鉴定了溃疡性结肠炎生发中心 B 细胞滤泡中的结构复杂性和相关的难以检测的稀有细胞类型。我们的方法加深了对健康和疾病发病机制的理解,为高度多重化空间生物学数据的嵌套结构检测提供了一种自动化策略,并为精准诊断和治疗策略提供了信息。