Suppr超能文献

基于多参数 MRI 的放射组学列线图用于诊断局灶性皮质发育不良并初步确定侧别

A radiomics nomogram based on multiparametric MRI for diagnosing focal cortical dysplasia and initially identifying laterality.

机构信息

Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.

Department of Pediatrics, The Affiliated Hospital of Jinggangshan University, Jinggangshan, Jiangxi Province, China.

出版信息

BMC Med Imaging. 2024 Aug 15;24(1):216. doi: 10.1186/s12880-024-01374-6.

Abstract

BACKGROUND

Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation. The diagnosis of FCD is challenging. We generated a radiomics nomogram based on multiparametric magnetic resonance imaging (MRI) to diagnose FCD and identify laterality early.

METHODS

Forty-three patients treated between July 2017 and May 2022 with histopathologically confirmed FCD were retrospectively enrolled. The contralateral unaffected hemispheres were included as the control group. Therefore, 86 ROIs were finally included. Using January 2021 as the time cutoff, those admitted after January 2021 were included in the hold-out set (n = 20). The remaining patients were separated randomly (8:2 ratio) into training (n = 55) and validation (n = 11) sets. All preoperative and postoperative MR images, including T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and combined (T1w + T2w + FLAIR) images, were included. The least absolute shrinkage and selection operator (LASSO) was used to select features. Multivariable logistic regression analysis was used to develop the diagnosis model. The performance of the radiomic nomogram was evaluated with an area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration and clinical utility.

RESULTS

The model-based radiomics features that were selected from combined sequences (T1w + T2w + FLAIR) had the highest performances in all models and showed better diagnostic performance than inexperienced radiologists in the training (AUCs: 0.847 VS. 0.664, p = 0.008), validation (AUC: 0.857 VS. 0.521, p = 0.155), and hold-out sets (AUCs: 0.828 VS. 0.571, p = 0.080). The positive values of NRI (0.402, 0.607, 0.424) and IDI (0.158, 0.264, 0.264) in the three sets indicated that the diagnostic performance of Model-Combined improved significantly. The radiomics nomogram fit well in calibration curves (p > 0.05), and decision curve analysis further confirmed the clinical usefulness of the nomogram. Additionally, the contrast (the radiomics feature) of the FCD lesions not only played a crucial role in the classifier but also had a significant correlation (r = -0.319, p < 0.05) with the duration of FCD.

CONCLUSION

The radiomics nomogram generated by logistic regression model-based multiparametric MRI represents an important advancement in FCD diagnosis and treatment.

摘要

背景

局灶性皮质发育不良(FCD)是最常见的致痫性发育性畸形。FCD 的诊断具有挑战性。我们基于多参数磁共振成像(MRI)生成了一个放射组学列线图,以早期诊断 FCD 并确定侧别。

方法

回顾性纳入 2017 年 7 月至 2022 年 5 月期间经组织病理学证实为 FCD 的 43 例患者。将对侧未受影响的半球作为对照组,最终共纳入 86 个 ROI。以 2021 年 1 月为时间截止点,将在此之后入院的患者纳入外部验证集(n=20)。其余患者随机分为训练集(n=55)和验证集(n=11)。所有术前和术后的 MRI 包括 T1 加权(T1w)、T2 加权(T2w)、液体衰减反转恢复(FLAIR)和联合(T1w+T2w+FLAIR)序列。使用最小绝对收缩和选择算子(LASSO)选择特征。采用多变量逻辑回归分析建立诊断模型。使用曲线下面积(AUC)、净重新分类改善(NRI)、综合判别改善(IDI)、校准和临床实用性评估放射组学列线图的性能。

结果

基于联合序列(T1w+T2w+FLAIR)的模型基放射组学特征在所有模型中表现最佳,在训练集(AUC:0.847 与 0.664,p=0.008)、验证集(AUC:0.857 与 0.521,p=0.155)和外部验证集(AUC:0.828 与 0.571,p=0.080)中表现优于无经验放射科医生。三个数据集的 NRI(0.402、0.607、0.424)和 IDI(0.158、0.264、0.264)的阳性值表明模型-联合的诊断性能显著提高。在校准曲线中,放射组学列线图拟合良好(p>0.05),决策曲线分析进一步证实了列线图的临床实用性。此外,FCD 病变的对比度(放射组学特征)不仅在分类器中起着关键作用,而且与 FCD 持续时间也有显著相关性(r=-0.319,p<0.05)。

结论

基于逻辑回归模型的多参数 MRI 生成的放射组学列线图代表了 FCD 诊断和治疗的重要进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe8/11325615/ea9bb67927c3/12880_2024_1374_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验