Yan Liang, Chen Yonghang, Xie Jiachun, Li Hao
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007, P. R. China.
Small. 2024 Oct;20(43):e2403596. doi: 10.1002/smll.202403596. Epub 2024 Aug 15.
Strategically engineering electrocatalysts with optimized interfacial electronic architectures and accelerated reaction dynamics is pivotal for augmenting hydrogen generation via alkaline water electrolysis on an industrial scale. Herein, a novel triple-interface heterostructure NiSe-NiSe-CoO nanoarrays are designed anchored on TiCT MXene (NiSe-NiSe-CoO/MXene) with significant work function difference (ΔΦ) as bifunctional electrocatalysts for water electrolysis. Theoretical calculations combined with experiments uncover the pivotal role of the interface-induced electric field in steering charge redistribution, which in turn modulates the adsorption and desorption kinetics of reaction intermediates. Furthermore, the synergistic interaction between NiSe-NiSe-CoO and TiCT MXene nanosheets endows the hybrids with a large electrochemical surface area, abundantly active sites, and high conductivity. Thus, NiSe-NiSe-CoO/MXene manifests exceptional catalytic prowess for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In addition, the NiSe-NiSe-CoO/MXene electrocatalyst in the water electrolyzer delivers excellent performance and maintains commendable stability beyond 100 h of electrocatalytic operation.
通过优化界面电子结构和加速反应动力学来策略性地设计电催化剂,对于在工业规模上通过碱性水电解提高制氢效率至关重要。在此,设计了一种新型的三界面异质结构NiSe-NiSe-CoO纳米阵列,其锚定在具有显著功函数差(ΔΦ)的TiCT MXene上(NiSe-NiSe-CoO/MXene),作为用于水电解的双功能电催化剂。理论计算与实验相结合揭示了界面诱导电场在引导电荷重新分布中的关键作用,这反过来又调节了反应中间体的吸附和解吸动力学。此外,NiSe-NiSe-CoO与TiCT MXene纳米片之间的协同相互作用赋予了该杂化物较大的电化学表面积、丰富的活性位点和高导电性。因此,NiSe-NiSe-CoO/MXene在析氢反应(HER)和析氧反应(OER)中表现出卓越的催化能力。此外,水电解槽中的NiSe-NiSe-CoO/MXene电催化剂具有优异的性能,并且在超过100小时的电催化操作后仍保持良好的稳定性。