Huang Wenting, Huang Yongfeng, Huang Xudong, Shao Fei, Liu Wenbao, Kang Feiyu
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Small. 2024 Nov;20(47):e2404294. doi: 10.1002/smll.202404294. Epub 2024 Aug 15.
Metallic zinc exhibits immense potential as an anode material for aqueous rechargeable zinc batteries due to its high theoretical capacity, low redox potential, and inherent safety. However, practical applications are hindered by dendrite formation and poor cycling stability. Herein, a facile substitution reaction method is presented to fabricate a 3D leaf-like Cu@Zn composite anode. This unique architecture, featuring a 3D network of leaf-like Cu on a Zn foil surface, significantly reduces nucleation overpotential and facilitates uniform Zn plating/stripping, effectively suppressing dendrite growth. Notably, an alloy layer of CuZn forms in situ on the 3D Cu layer during cycling. DFT calculations reveal that this CuZn alloy possesses a lower Zn binding energy compared to both Cu and Zn metal, further promoting Zn plating/stripping and enhancing electrochemical kinetics. Consequently, the symmetric Cu@Zn electrode exhibits remarkable cycling stability, surpassing 1300 h at 0.5 mA cm with negligible dendrite formation. Furthermore, full cells comprising Cu@Zn||VO exhibit superior capacity and rate performance compared to bare Zn anodes. This work provides a promising strategy for constructing highly stable and efficient Zn anodes for next-generation aqueous zinc batteries.
金属锌因其高理论容量、低氧化还原电位和固有安全性,作为水系可充电锌电池的负极材料展现出巨大潜力。然而,枝晶形成和较差的循环稳定性阻碍了其实际应用。在此,我们提出一种简便的置换反应方法来制备三维叶状Cu@Zn复合负极。这种独特的结构,其特征是在锌箔表面有三维叶状铜网络,显著降低了成核过电位,并促进了锌的均匀沉积/溶解,有效抑制了枝晶生长。值得注意的是,在循环过程中,三维铜层上原位形成了CuZn合金层。密度泛函理论计算表明,与铜和锌金属相比,这种CuZn合金具有更低的锌结合能,进一步促进了锌的沉积/溶解并增强了电化学动力学。因此,对称的Cu@Zn电极表现出卓越的循环稳定性,在0.5 mA cm下超过1300小时,枝晶形成可忽略不计。此外,与裸锌负极相比,由Cu@Zn||VO组成的全电池表现出优异的容量和倍率性能。这项工作为构建用于下一代水系锌电池的高度稳定且高效的锌负极提供了一种有前景的策略。