Suppr超能文献

跨多个队列评估的不完全海马反转的自动评级

Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts.

作者信息

Hemforth Lisa, Couvy-Duchesne Baptiste, De Matos Kevin, Brianceau Camille, Joulot Matthieu, Banaschewski Tobias, Bokde Arun L W, Desrivières Sylvane, Flor Herta, Grigis Antoine, Garavan Hugh, Gowland Penny, Heinz Andreas, Brühl Rüdiger, Martinot Jean-Luc, Paillère Martinot Marie-Laure, Artiges Eric, Papadopoulos Dimitri, Lemaitre Herve, Paus Tomas, Poustka Luise, Hohman Sarah, Holz Nathalie, Fröhner Juliane H, Smolka Michael N, Vaidya Nilakshi, Walter Henrik, Whelan Robert, Schumann Gunter, Büchel Christian, Poline J B, Itterman Bernd, Frouin Vincent, Martin Alexandre, Cury Claire, Colliot Olivier

机构信息

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France.

Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4072, Australia.

出版信息

ArXiv. 2025 Jan 20:arXiv:2408.02496v2.

Abstract

Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models ("conv5-FC3", ResNet and "SECNN") as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM and QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the "conv5-FC3" network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization (acceptable performances on all tested cohorts including some that are not included in training). The trained models are available at https://github.com/LisaHemforth/AutomaticIHIRating.

摘要

不完全海马反转(IHI),有时也称为海马旋转不良,是一种非典型的海马解剖模式,在约20%的普通人群中存在。可以使用结合了四个解剖学标准的综合评分,在T1加权磁共振图像的冠状切片上对IHI进行视觉评估。IHI与多种脑部疾病(癫痫、精神分裂症)有关。然而,这些研究基于小样本。此外,导致IHI发生的因素(遗传或环境)在很大程度上尚不清楚。因此,需要大规模研究来进一步了解IHI及其与神经和精神疾病的潜在关系。然而,视觉评估耗时且繁琐,这证明了需要一种自动方法的合理性。在本文中,我们首次提出自动对IHI进行评分。我们通过预测四个解剖学标准来进行,然后将它们相加形成IHI评分,从而提供了一个可解释评分的优势。我们对不同的机器学习方法和训练策略进行了广泛的实验研究。我们使用各种深度学习模型(“conv5-FC3”、ResNet和“SECNN”)以及岭回归进行自动评分。我们使用不同的队列研究了我们模型的泛化能力,并进行了多队列学习。我们依赖于来自IMAGEN研究的2008名参与者、来自QTIM和QTAB研究的993名和403名参与者以及来自英国生物银行的985名受试者的大量人群。我们表明深度学习模型优于岭回归。我们证明了“conv5-FC3”网络的性能至少与更复杂的网络一样好,同时保持较低的复杂度和计算时间。我们表明在单个队列上进行训练可能缺乏变异性,而在多个队列上进行训练可以提高泛化能力(在所有测试队列上都有可接受的性能,包括一些未包含在训练中的队列)。训练好的模型可在https://github.com/LisaHemforth/AutomaticIHIRating上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b385/11887968/3aa39d0b68c6/nihpp-2408.02496v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验