Suppr超能文献

利用可解释机器学习和形态学分析细胞成像数据鉴定溶酶体趋向性。

Identification of lysosomotropism using explainable machine learning and morphological profiling cell painting data.

作者信息

Tandon Aishvarya, Santura Anna, Waldmann Herbert, Pahl Axel, Czodrowski Paul

机构信息

Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 Dortmund Germany

Department of Chemistry, Johannes Gutenberg University Mainz Mainz Germany

出版信息

RSC Med Chem. 2024 May 24;15(8):2677-2691. doi: 10.1039/d4md00107a. eCollection 2024 Aug 14.

Abstract

Lysosomotropism is a phenomenon of diverse pharmaceutical interests because it is a property of compounds with diverse chemical structures and primary targets. While it is primarily reported to be caused by compounds having suitable lipophilicity and basicity values, not all compounds that fulfill such criteria are in fact lysosomotropic. Here, we use morphological profiling by means of the cell painting assay (CPA) as a reliable surrogate to identify lysosomotropism. We noticed that only 35% of the compound subset with matching physicochemical properties show the lysosomotropic phenotype. Based on a matched molecular pair analysis (MMPA), no key substructures driving lysosomotropism could be identified. However, using explainable machine learning (XML), we were able to highlight that higher lipophilicity, basicity, molecular weight, and lower topological polar surface area are among the important properties that induce lysosomotropism in the compounds of this subset.

摘要

溶酶体趋向性是一个具有多种药学意义的现象,因为它是具有不同化学结构和主要靶点的化合物的一种特性。虽然主要报道称其由具有合适亲脂性和碱性值的化合物引起,但并非所有满足这些标准的化合物实际上都是溶酶体趋向性的。在此,我们通过细胞绘画分析(CPA)进行形态学分析,作为识别溶酶体趋向性的可靠替代方法。我们注意到,具有匹配物理化学性质的化合物子集中只有35%表现出溶酶体趋向性表型。基于匹配分子对分析(MMPA),无法确定驱动溶酶体趋向性的关键子结构。然而,使用可解释机器学习(XML),我们能够强调较高的亲脂性、碱性、分子量以及较低的拓扑极性表面积是诱导该子集中化合物产生溶酶体趋向性的重要性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1fb/11324048/899cb00c82d1/d4md00107a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验