Humer Christina, Heberle Henry, Montanari Floriane, Wolf Thomas, Huber Florian, Henderson Ryan, Heinrich Julian, Streit Marc
Johannes Kepler University Linz, Linz, Austria.
Division Crop Science, Bayer AG, 40789, Monheim am Rhein, DE, Germany.
J Cheminform. 2022 Apr 4;14(1):21. doi: 10.1186/s13321-022-00600-z.
The introduction of machine learning to small molecule research- an inherently multidisciplinary field in which chemists and data scientists combine their expertise and collaborate - has been vital to making screening processes more efficient. In recent years, numerous models that predict pharmacokinetic properties or bioactivity have been published, and these are used on a daily basis by chemists to make decisions and prioritize ideas. The emerging field of explainable artificial intelligence is opening up new possibilities for understanding the reasoning that underlies a model. In small molecule research, this means relating contributions of substructures of compounds to their predicted properties, which in turn also allows the areas of the compounds that have the greatest influence on the outcome to be identified. However, there is no interactive visualization tool that facilitates such interdisciplinary collaborations towards interpretability of machine learning models for small molecules. To fill this gap, we present CIME (ChemInformatics Model Explorer), an interactive web-based system that allows users to inspect chemical data sets, visualize model explanations, compare interpretability techniques, and explore subgroups of compounds. The tool is model-agnostic and can be run on a server or a workstation.
将机器学习引入小分子研究领域(这是一个本质上多学科交叉的领域,化学家与数据科学家在此结合专业知识并展开合作)对于提高筛选过程的效率至关重要。近年来,众多预测药代动力学性质或生物活性的模型已被发表,化学家们每天都在使用这些模型来做决策并确定想法的优先级。新兴的可解释人工智能领域为理解模型背后的推理开辟了新的可能性。在小分子研究中,这意味着将化合物子结构的贡献与其预测性质联系起来,这反过来也能确定对结果影响最大的化合物区域。然而,目前还没有一种交互式可视化工具能够促进这种跨学科合作,以实现小分子机器学习模型的可解释性。为了填补这一空白,我们展示了CIME(化学信息学模型浏览器),这是一个基于网络的交互式系统,允许用户检查化学数据集、可视化模型解释、比较可解释性技术以及探索化合物的子组。该工具与模型无关,可以在服务器或工作站上运行。