Suppr超能文献

在资源受限的微控制器上使用深度学习进行疫苗制冷系统的实时温度异常检测。

Real-time temperature anomaly detection in vaccine refrigeration systems using deep learning on a resource-constrained microcontroller.

作者信息

Harrabi Mokhtar, Hamdi Abdelaziz, Ouni Bouraoui, Bel Hadj Tahar Jamel

机构信息

Department of Computer Engineering ISITCOM, University of Sousse, Sousse, Tunisia.

NOOCCS Research Lab, ENISO University of Sousse, Sousse, Tunisia.

出版信息

Front Artif Intell. 2024 Aug 1;7:1429602. doi: 10.3389/frai.2024.1429602. eCollection 2024.

Abstract

Maintaining consistent and accurate temperature is critical for the safe and effective storage of vaccines. Traditional monitoring methods often lack real-time capabilities and may not be sensitive enough to detect subtle anomalies. This paper presents a novel deep learning-based system for real-time temperature fault detection in refrigeration systems used for vaccine storage. Our system utilizes a semi-supervised Convolutional Autoencoder (CAE) model deployed on a resource-constrained ESP32 microcontroller. The CAE is trained on real-world temperature sensor data to capture temporal patterns and reconstruct normal temperature profiles. Deviations from the reconstructed profiles are flagged as potential anomalies, enabling real-time fault detection. Evaluation using real-time data demonstrates an impressive 92% accuracy in identifying temperature faults. The system's low energy consumption (0.05 watts) and memory usage (1.2 MB) make it suitable for deployment in resource-constrained environments. This work paves the way for improved monitoring and fault detection in refrigeration systems, ultimately contributing to the reliable storage of life-saving vaccines.

摘要

保持一致且准确的温度对于疫苗的安全有效储存至关重要。传统的监测方法往往缺乏实时功能,可能不够灵敏,无法检测到细微的异常情况。本文提出了一种基于深度学习的新型系统,用于疫苗储存制冷系统中的实时温度故障检测。我们的系统利用部署在资源受限的ESP32微控制器上的半监督卷积自动编码器(CAE)模型。CAE在真实世界的温度传感器数据上进行训练,以捕捉时间模式并重建正常温度曲线。与重建曲线的偏差被标记为潜在异常,从而实现实时故障检测。使用实时数据进行的评估表明,在识别温度故障方面,准确率高达92%,令人印象深刻。该系统的低能耗(0.05瓦)和内存使用量(1.2 MB)使其适合在资源受限的环境中部署。这项工作为改进制冷系统的监测和故障检测铺平了道路,最终有助于可靠地储存救命疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b72/11324578/d75c2291f26e/frai-07-1429602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验