Coupe Sebastian, Fakhri Nikta
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA.
bioRxiv. 2024 Aug 11:2024.08.11.607499. doi: 10.1101/2024.08.11.607499.
Biomolecular condensates represent a frontier in cellular organization, existing as dynamic materials driven out of equilibrium by active cellular processes. Here we explore active mechanisms of condensate regulation by examining the interplay between DEAD-box helicase activity and RNA base-pairing interactions within ribonucleoprotein condensates. We demonstrate how the ATP-dependent activity of DEAD-box helicases-a key class of enzymes in condensate regulation-acts as a nonequilibrium driver of condensate properties through the continuous remodeling of RNA interactions. By combining the LAF-1 DEAD-box helicase with a designer RNA hairpin concatemer, we unveil a complex landscape of dynamic behaviors, including time-dependent alterations in RNA partitioning, evolving condensate morphologies, and shifting condensate dynamics. Importantly, we reveal an antagonistic relationship between RNA secondary structure and helicase activity which promotes condensate homogeneity via a nonequilibrium steady state. By elucidating these nonequilibrium mechanisms, we gain a deeper understanding of cellular organization and expand the potential for active synthetic condensate systems.
生物分子凝聚物是细胞组织研究的前沿领域,作为由活跃的细胞过程驱动而远离平衡态的动态物质而存在。在这里,我们通过研究核糖核蛋白凝聚物中DEAD盒解旋酶活性与RNA碱基配对相互作用之间的相互作用,探索凝聚物调控的活性机制。我们展示了DEAD盒解旋酶(凝聚物调控中的一类关键酶)的ATP依赖活性如何通过RNA相互作用的持续重塑,作为凝聚物性质的非平衡驱动因素。通过将LAF-1 DEAD盒解旋酶与设计的RNA发夹串联体相结合,我们揭示了一个复杂的动态行为景观,包括RNA分配的时间依赖性变化、不断演变的凝聚物形态以及凝聚物动力学的转变。重要的是,我们揭示了RNA二级结构与解旋酶活性之间的拮抗关系,这种关系通过非平衡稳态促进凝聚物的均匀性。通过阐明这些非平衡机制,我们对细胞组织有了更深入的理解,并扩展了活性合成凝聚物系统的潜力。